Author: Williams, P.H.
Paper Title Page
TUPAB038 Simulation of the Filling Pattern Dependent Regenerative Beam Breakup Instabilities in Energy Recover Linacs 1431
 
  • S. Setiniyaz, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The interaction of a transversely displaced beam with the higher modes (HOM) of the accelerating cavities causes building up HOM voltages in the cavity, which in turn kicks the beam and increases the offset further. This is known as regenerative beam breakup (BBU) instability and it sets the beam threshold current for the stable beam operation. A study by Setiniyaz et al.~[Setiniyaz2020] showed the filling pattern and recombination schemes of multi-turn energy recovery linacs (ERLs) can create many different beam loading transients, which can have a big impact on the cavity fundamental mode voltage and RF stabilizes. In this work, we extend the study of the filling pattern and recombination schemes to the BBU instabilities and threshold current. In the ERLs, the accelerated and decelerated bunches can be ordered differently while they pass through the cavity and form different filling patterns. Each pattern has a unique bunch energy sequence and bunch arrival times and hence interacts with cavity uniquely and thus drives BBU differently. In this paper, we introduce a simulation tool to investigate the filling pattern dependence of the ERL BBU instability.
* S. Setiniyaz, R. Apsimon, and P. H. Williams, Phys. Rev. Accel. Beams 23, 072002, 2020.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB038  
About • paper received ※ 20 May 2021       paper accepted ※ 09 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB079 Using ER@CEBAF to Show that a Multipass ERL Can Drive an XFEL 1555
 
  • G. Perez-Segurana
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • I.R. Bailey, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • R.M. Bodenstein, S.A. Bogacz, D. Douglas, Y. Roblin, T. Satogata
    JLab, Newport News, Virginia, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  A multi-pass recirculating superconducting CW linac offers a cost effective path to a multi-user facility with unprecedented scientific and industrial reach over a wide range of disciplines. We propose such a facility as an option for a potential UK-XFEL. Energy Recovery enables multi-MHz FEL sources, for example, an X-ray FEL oscillator or regenerative amplifier FEL. Additionally, combining with external lasers and/or self-interaction would provide access to MeV and GeV gamma-rays via inverse Compton scattering at high average power for nuclear and particle physics applications. An opportunity exists to demonstrate the necessary point-to-parallel longitudinal matches to drive an XFEL and successfully energy recover at the upcoming 5-pass up, 5-pass down Energy Recovery experiment on CEBAF at JLab termed ER@CEBAF. We show candidate matches and simulations supporting the minimal necessary modifications to CEBAF this will require. This includes linearisation of the longitudinal phase space in the injector and a reduction in the dispersion of the arcs, both of which increase the energy acceptance of CEBAF. We expect to commence initial tests of these adaptations on CEBAF during 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB079  
About • paper received ※ 17 May 2021       paper accepted ※ 27 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB009 A Hard X-Ray Compton Source at CBETA 3765
 
  • K.E. Deitrick, C. Franck, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Crone, H.L. Owen
    UMAN, Manchester, United Kingdom
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
  • G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • B.D. Muratori, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.D. Muratori, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced by ICS outperform those produced by undulators in term of flux and brilliance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB009  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)