Author: Wang, Y.
Paper Title Page
TUPAB007 A Correction Scheme for the Magnet Imperfection on the CEPC Collider Ring 1346
 
  • B. Wang, Y. Wang, Y. Wei, C.H. Yu, Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  This paper describes the error correction scheme for the CEPC CDR lattice in Higgs mode, which has a small beta function at the interaction point. The low emittance optics has an enhanced sensitivity to the magnet misalignments and field errors, especially for the final focus quadrupole misalignment. The magnet imperfection will cause the closed orbit distortion and optics distortion. The correction scheme for these magnet imperfections includes the closed orbit correction, the dispersion correction, the beta function correction and the betatron coupling correction. The resulting performance and the dynamic aperture for the corrected lattice are studied.  
poster icon Poster TUPAB007 [1.075 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB007  
About • paper received ※ 14 May 2021       paper accepted ※ 09 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB033 Lattice Design of the CEPC Collider Ring for a High Luminosity Scheme 2679
 
  • Y. Wang, S. Bai, J. Gao, B. Wang, D. Wang, Y. Wei, J. Wu, C.H. Yu, J.Y. Zhai, Y. Zhang, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
  • Y. Zhang
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  A high luminosity scheme of the CEPC has been proposed aiming to increase the luminosity mainly at Higgs and Z modes. In this paper, the high luminosity scheme will be introduced briefly, including the beam parameters and RF staging. Then, the lattice design of the CEPC collider ring for the high luminosity scheme will be presented, including the bare lattice design and dynamic aperture optimization at Higgs energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB033  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)