Author: Wang, X.J.
Paper Title Page
MOPAB141 Terahertz Driven Compression and Time-Stamping Technique for Single-Shot Ultrafast Electron Diffraction 492
 
  • M.A.K. Othman, A.E. Gabriel, M.C. Hoffmann, F. Ji, E.A. Nanni, X. Shen, E.J.C. Snively, X.J. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This research has been supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-76SF00515 and DE-AC02-05-CH11231.
Ultrafast structural dynamics are well understood through pump-probe characterization using ultrafast electron diffraction (UED). Advancements in electron diffraction and spectroscopy techniques open new frontiers for scientific discovery through interrogation of ultrafast phenomena, such as quantum phase transitions. Previously, we have demonstrated that strong-field THz radiation can be utilized to efficiently manipulate and compress ultrafast electron probes *, and also offer temporal diagnostics with sub-femtosecond resolution ** enabled by the inherent phase locking of THz radiation to the photoemission optical drive. In this work, we demonstrate a novel THz compression and time-stamping technique to probe solid-state materials at time scales previously inaccessible with standard UED. A high-frequency THz generation method using the organic OH-1 crystals is employed to enable a threefold reduction in the electron probes length and overall timing jitter. These time-stamped probes are used to demonstrate a substantial enhancement in the UED temporal resolution using pump-probe measurement in both photoexcited single crystal and polycrystalline samples.
* E. C. Snively et al., Phys. Rev. Lett, vol. 124, no. 6, p. 054801, 2020.
** R. K. Li et al., Phys. Rev. Accel. Beams, vol. 22, no. 1, p. 012803, Jan. 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB141  
About • paper received ※ 20 May 2021       paper accepted ※ 21 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)