Author: Vorobev, V.V.
Paper Title Page
TUPAB249 Diffraction at the Open-Ended Dielectric-Loaded Circular Waveguide 2033
 
  • S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Contemporary beam and THz technologies are tightly interlaced during last years. Strong THz fields allow realization of THz driven electron guns, THz bunch compression, streaking* and THz driven wakefield acceleration**. Inversely, dielectric capillaries similar to those used for THz bunch manipulation can be in turn utilized for development of high-power narrow-band THz sources***. Mentioned cases involve interaction of THz waves and particle bunches with an open end of certain dielectric loaded waveguide structure, most frequently a circular capillary. For further development of the discussed prospective topics a rigorous approach allowing analytical investigation of both radiation from open-ended capillaries and their excitation by external source would be extremely useful. We present an elegant and efficient rigorous method for solving circular open-ended dielectric-loaded waveguide diffraction problems based on Wiener-Hopf technique. We deal with the case of uniform dielectric loading and internal excitation by a waveguide mode. S-parameters, near-field and far-field distributions are presented. The obtained results can be also applied to the narrow band wakefield.
* L. Zhao et al., Phys. Rev. Lett., 124, 054802 (2020).
** M.T. Hibberd et al., Nat. Photonics, 14, 755-759 (2020).
*** D. Wang et al., Rev. Sci. Instr., 89(9), 093301 (2018).
 
poster icon Poster TUPAB249 [2.160 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB249  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)