Author: Tranquille, G.
Paper Title Page
MOPAB177 ELENA Commissioning and Status 598
 
  • C. Carli, M.E. Angoletta, W. Bartmann, L. Bojtár, F. Butin, B. Dupuy, Y. Dutheil, M.A. Fraser, P. Freyermuth, D. Gamba, L.V. Jørgensen, B. Lefort, O. Marqversen, M. McLean, S. Ogur, S. Pasinelli, L. Ponce, G. Tranquille
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring ELENA is a small synchrotron recently constructed and commissioned to decelerate antiprotons injected from the Antiproton Decelerator AD with a kinetic energy of 5.3 MeV down to 100 keV. Controlled deceleration in the synchrotron, equipped with an electron cooler to reduce losses and generate dense bunches, allows the experiments, typically capturing the antiprotons in traps and manipulating them further, to improve the trapping efficiency by one to two orders of magnitude. During 2018, bunches with an energy of 100 keV with parameters close to nominal have been demonstrated, and first beams have been provided to an experiment in a new experimental zone. The magnetic transfer lines from the AD to the experiments have been replaced by electrostatic lines from ELENA. Commissioning of the new transfer lines and, in parallel, studies to better understand the ring with H beams from a dedicated source, have started in autumn 2020. The first 100 keV antiproton physics run using ELENA will start in late summer 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB177  
About • paper received ※ 18 May 2021       paper accepted ※ 14 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB152 Carbon Nanotubes as Cold Electron Field Emitters for Electron Cooling in the CERN Extra Low Energy Antiproton (ELENA) Ring 2975
 
  • B. Galante, G. Tranquille
    CERN, Meyrin, Switzerland
  • O. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    IFIC, Valencia, Spain
 
  In ELENA electron cooling reduces the emittance of the antiproton beam allowing to deliver a high-quality beam to the experiments at the unprecedented low energy of 100 keV. To cool the antiproton beam at this low energy, the electron gun must emit electrons with as monoenergetic a distribution as possible. The currently used thermionic gun limits the cooling performance due to the relatively high transverse energy spread of the emitted electrons. Optimization is therefore being studied, aiming at developing a cold-cathode electron gun. This has led to the investigation of carbon nanotubes (CNTs) as cold electron field emitters. CNTs are considered the most promising field emitter material due to their high aspect ratio, chemical stability, and capability to deliver high current densities. To assess the feasibility of using such material operationally a full characterization is required, focussing on key parameters such as emitted current, emission stability, and lifetime. This contribution will present the status of ongoing experiments reporting on the conditioning process necessary to reach good stability over time and the emitting performance of different CNT arrays.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB152  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)