Paper | Title | Page |
---|---|---|
MOPAB416 | BDSIM Developments for Hadron Therapy Centre Applications | 1252 |
|
||
Hadron therapy centres are evolving towards reduced-footprint layouts, often featuring a single treatment room. The evaluation of beam properties, radiation protection quantities, and concrete shielding activation via numerical simulations poses new challenges that can be tackled using the numerical beam transport and Monte-Carlo code Beam Delivery Simulation (BDSIM), allowing a seamless simulation of the dynamics as a whole. Specific developments have been carried out in BDSIM to advance its efficiency toward such applications, and a detailed 4D Monte-Carlo scoring mechanism has been implemented. It produces tallies such as the spatial-energy differential fluence in arbitrary scoring meshes. The feature makes use of the generic boost::histogram library and allows an event-by-event serialisation and storage in the ROOT data format. The pyg4ometry library is extended to improve the visualisation of critical features such as the complex geometries of BDSIM models, the beam tracks, and the scored quantities. Data are converted from Geant4 and ROOT to a 3D visualisation using the VTK framework. These features are applied to a complete IBA Proteus One model. | ||
Poster MOPAB416 [1.575 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB416 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 12 July 2021 issue date ※ 15 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB214 | Recent BDSIM Related Developments and Modeling of Accelerators | 4208 |
|
||
Funding: This work is supported by the STFC (UK) grants: JAI ST/P00203X/1, HL-LHC-UK1 ST/N001583/1, HL-LHC-UK2 ST/T001925/1, and ST/P003028/1. Beam Delivery Simulation (BDSIM) is a program based on Geant4 that creates 3D radiation transport models of accelerators from a simple optical description in a vastly reduced time frame with great flexibility. It also uses ROOT and CLHEP to create a single simulation model that can accurately track all particle species in an accelerator to predict and understand beam losses, secondary radiation, dosimetric quantities and their origin. BDSIM provides a library of scalable generic geometry for a variety of applications. Our Python package, Pyg4ometry, allows rapid preparation and conversion of geometries for BDSIM and other radiation transport simulations including FLUKA. We present a broad overview of BDSIM developments related to a variety of experiments at several facilities. We present a model of the forward experiment FASER at the LHC, CERN where the geometry is composited from multiple sources using Pyg4ometry. The analysis of particle history is presented as well as production mechanisms. We also present the application of recently introduced laser interactions in Geant4 to Compton photons from a laserwire diagnostic at the ATF2. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB214 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 19 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |