Author: Suraj, A.
Paper Title Page
TUPAB094 Multi-Start Foil Wound Solenoids for Multipole Suppression 1596
 
  • N. Majernik, A. Fukasawa, J.B. Rosenzweig, A. Suraj
    UCLA, Los Angeles, California, USA
 
  Funding: National Science Foundation Grant No. PHY-1549132 - CBB, DE-SC0020409
Solenoids for beam transport are typically wound helically, with each layer of wire being laid down on top of the previous, or as "pancakes" where the wire is wound radially in before crossing over and winding out. Both of these approaches break rotational symmetry and introduce higher-order multipole moments which can be deleterious to beam emittance. For high brightness beams, this can be particularly problematic. To this end, a solenoid employing multi-start foil windings is simulated and compared to conventional choices. With appropriate design, this approach can forbid certain multipoles by symmetry.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB094  
About • paper received ※ 19 May 2021       paper accepted ※ 20 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB096 RF Testbed for Cryogenic Photoemission Studies 2810
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.B. Rosenzweig, A. Suraj, M. Yadav
    UCLA, Los Angeles, California, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • M. Yadav
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409
Producing higher brightness beams at the cathode is one of the main focuses for future electron beam applications. For photocathodes operating close to their emission threshold, the cathode lattice temperature begins to dominate the minimum achievable intrinsic emittance. At UCLA, we are designing a radiofrequency (RF) test bed for measuring the temperature dependence of the mean transverse energy (MTE) and quantum efficiency for a number of candidate cathode materials. We intend to quantify the attainable brightness improvements at the cathode from cryogenic operation and establish a proof-of-principle cryogenic RF gun for future studies of a 1.6 cell cryogenic photoinjector for the UCLA ultra compact XFEL concept (UC-XFEL). The test bed will use a C-band 0.5-cell RF gun designed to operate down to 40K, producing an on-axis accelerating field of 120 MV/m. The cryogenic system uses conduction cooling and a load-lock system is being designed for transport and storage of air-sensitive high brightness cathodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB096  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)