Author: Sterbini, G.
Paper Title Page
MOPAB008 Exploiting the Beam-Beam Wire Demonstrators in the Next LHC Run 3 65
 
  • A. Poyet
    Université Grenoble Alpes, Grenoble, France
  • S.D. Fartoukh, N. Karastathis, Y. Papaphilippou, A. Rossi, G. Sterbini
    CERN, Geneva, Switzerland
  • K. Skoufaris
    University of Crete, Heraklion, Crete, Greece
 
  After the successful experiments performed during the LHC Run 2 with the Beam-Beam Wire demonstrators installed, on Beam 2, in the frame of the HL-LHC project, two of the four wire demonstrators were moved to Beam 1. The objective is to gain operational experience with the wire compensation also on that beam and therefore fully exploit the demonstrators’ potential. This paper proposes a numerical validation of the wire implementation using Run 3 scenarios and explores the optimization of those devices in that respect.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB008  
About • paper received ※ 17 May 2021       paper accepted ※ 24 May 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB022 FailSim: A Numerical Toolbox for the Study of Fast Failures and Their Impact on Machine Protection at the CERN Large Hadron Collider 111
 
  • C. Hernalsteens, G. Sterbini, O.K. Tuormaa, C. Wiesner, D. Wollmann
    CERN, Geneva, Switzerland
 
  The High Luminosity LHC (HL-LHC) foresees to reach a nominal, levelled luminosity of 5·1034 cm-2 s−1 through a higher beam brightness and by using new equipment, such as larger aperture final focusing quadrupole magnets. The HL-LHC upgrade has critical impacts on the machine protection strategy, as the stored beam energy reaches 700 MJ for each of the two beams. Some failure modes of the novel active superconducting magnet protection system of the inner triplet magnets, namely the Coupling-Loss Induced Quench (CLIQ) systems, have been identified as critical. This paper reports on FailSim, a Python-language framework developed to study the machine protection impact of failure cases and their proposed mitigation. It provides seamless integration of the successive phases required by the simulation studies, i.e., verifying the optics, preparing and running a MAD-X instance for multiple particle tracking, processing and analysing the simulation results and summarising them with the relevant plots to provide a solid estimate of the beam losses, their location and time evolution. The paper also presents and discusses the result of its application on the spurious discharge of a CLIQ unit.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB022  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB183 A Framework for Dynamic Aperture Studies for Colliding Beams in the High-Luminosity Large Hadron Collider 620
 
  • S. Kostoglou, H. Bartosik, Y. Papaphilippou, G. Sterbini
    CERN, Geneva, Switzerland
 
  During the last physics run of the Large Hadron Collider (LHC), Dynamic Aperture (DA) studies have been successfully employed to optimize the accelerator’s performance by guiding the selection of the beam and machine parameters. In this paper, we present a framework for single-particle tracking simulations aiming to refine the envisaged operational scenario of the future LHC upgrade, the High-Luminosity LHC (HL-LHC), including strong non-linear fields such as beam-beam interactions. The impact of several parameters and beam processes during the cycle is initially illustrated with frequency maps and then quantified with DA studies.  
poster icon Poster MOPAB183 [2.789 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB183  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)