Author: Shields, W.
Paper Title Page
MOPAB416 BDSIM Developments for Hadron Therapy Centre Applications 1252
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Geneva, Switzerland
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
 
  Hadron therapy centres are evolving towards reduced-footprint layouts, often featuring a single treatment room. The evaluation of beam properties, radiation protection quantities, and concrete shielding activation via numerical simulations poses new challenges that can be tackled using the numerical beam transport and Monte-Carlo code Beam Delivery Simulation (BDSIM), allowing a seamless simulation of the dynamics as a whole. Specific developments have been carried out in BDSIM to advance its efficiency toward such applications, and a detailed 4D Monte-Carlo scoring mechanism has been implemented. It produces tallies such as the spatial-energy differential fluence in arbitrary scoring meshes. The feature makes use of the generic boost::histogram library and allows an event-by-event serialisation and storage in the ROOT data format. The pyg4ometry library is extended to improve the visualisation of critical features such as the complex geometries of BDSIM models, the beam tracks, and the scored quantities. Data are converted from Geant4 and ROOT to a 3D visualisation using the VTK framework. These features are applied to a complete IBA Proteus One model.  
poster icon Poster MOPAB416 [1.575 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB416  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB214 Recent BDSIM Related Developments and Modeling of Accelerators 4208
 
  • L.J. Nevay, A. Abramov, S.E. Alden, S.T. Boogert, G. D’Alessandro, S.M. Gibson, H. Lefebvre, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
  • A. Abramov, G. D’Alessandro, C. Hernalsteens
    CERN, Meyrin, Switzerland
  • E. Gnacadja, C. Hernalsteens, E. Ramoisiaux, R. Tesse
    ULB, Bruxelles, Belgium
  • S. Liu
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the STFC (UK) grants: JAI ST/P00203X/1, HL-LHC-UK1 ST/N001583/1, HL-LHC-UK2 ST/T001925/1, and ST/P003028/1.
Beam Delivery Simulation (BDSIM) is a program based on Geant4 that creates 3D radiation transport models of accelerators from a simple optical description in a vastly reduced time frame with great flexibility. It also uses ROOT and CLHEP to create a single simulation model that can accurately track all particle species in an accelerator to predict and understand beam losses, secondary radiation, dosimetric quantities and their origin. BDSIM provides a library of scalable generic geometry for a variety of applications. Our Python package, Pyg4ometry, allows rapid preparation and conversion of geometries for BDSIM and other radiation transport simulations including FLUKA. We present a broad overview of BDSIM developments related to a variety of experiments at several facilities. We present a model of the forward experiment FASER at the LHC, CERN where the geometry is composited from multiple sources using Pyg4ometry. The analysis of particle history is presented as well as production mechanisms. We also present the application of recently introduced laser interactions in Geant4 to Compton photons from a laserwire diagnostic at the ATF2.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB214  
About • paper received ※ 20 May 2021       paper accepted ※ 19 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB359 Simulations of the Stage 2 FFA Injection Line of LhARA for Evaluating Beam Transport Performance 4495
 
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
  • A. Kurup, H.T. Lau, K.R. Long, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  A new, novel facility for radiobiological research, the Laser-hybrid Accelerator for Radiobiological Applications (LhARA), has recently been proposed. LhARA will be a two-stage facility with the first stage employing laser-target acceleration to produce intense proton bunches of energies up to 15 MeV. The second stage will accelerate the beam in an FFA ring up to 127 MeV. Optimal performance of stage 2, however, will require an emittance reduction of the stage 1 beam due to the FFA’s nominal dynamical acceptance. Here, we demonstrate a new optical configuration of LhARA’s stage 1 lattice that will provide this reduced emittance. The profile of the laser-target generated beam is far from an ideal Gaussian, therefore two start-to-end Monte Carlo particle tracking codes have been used to model beam transport performance from the laser-target source through to the end of the stage 2 FFA injection line. The Geant4-based Beam Delivery Simulation (BDSIM) was used to model beam losses and the collimation that is crucial to LhARA’s energy selection system, and General Particle Tracer (GPT) was used to model the space-charge effects that may impact performance given the emittance reduction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB359  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)