Author: Sanwalka, K.
Paper Title Page
TUXB06
High Transformer Ratio Plasma Wakefield Acceleration and Current Profile Reconstruction Using Emittance Exchange  
 
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G. Andonian, A. Deng, C.E. Hansel, G.E. Lawler, W.J. Lynn, R. Robles, J.B. Rosenzweig, K. Sanwalka
    UCLA, Los Angeles, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.E. Conde, D.S. Doran, G. Ha, J.G. Power, J. Seok, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the Department of Energy, Office of High Energy Physics, under Contract No. DESC0017648.
To overcome limits on total acceleration achievable in plasma wakefield accelerators, specially shaped drive beams can be used to increase the transformer ratio, implying that the drive beam deceleration is minimized in comparison with acceleration obtained in the wake. We report the results of a nonlinear PWFA, high transformer ratio experiment using high-charge, longitudinally asymmetric drive beams in a plasma cell. An emittance exchange process is used to generate variable drive current profiles, in conjunction with a long (multiple plasma wavelength) witness beam. The witness beam is energy-modulated by the wakefield, yielding a response that contains detailed spectral information in a single-shot measurement. Using these methods, we generate a variety of beam profiles and characterize the wakefields, directly observing beam-loaded transformer ratios up to 7.8. Further, a spectrally-based current reconstruction technique, validated by 3D particle-in-cell simulations, is introduced to obtain the drive beam profile from the decelerating wakefield data.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)