Author: Rude, V.
Paper Title Page
TUPAB307 Robust Optical Instrumentation for Accelerator Alignment Using Frequency Scanning Interferometry 2203
 
  • M. Sosin, H. Mainaud Durand, F. Micolon, V. Rude, J.M. Rutkowski
    CERN, Geneva, Switzerland
 
  The precise alignment of components inside particle accelerators is an important engineering challenge in high-energy physics. Optical interferometry, being a precise, optical distance measurement technique, is often a method of choice in such applications. However, classical fringe-counting interferometers present several drawbacks in terms of system complexity. Due to the increasing availability of broadband, high-speed, sweeping laser sources, Frequency Scanning Interferometry (FSI) based systems, using Fourier analysis of the interference signal, are becoming a subject of growing interest. In the framework of the High-Luminosity LHC project at CERN, a range of FSI-based sensor solutions have been developed and tested. It includes the optical equipment for monitoring the position of cryogenic components inside their cryostats and FSI instrumentation like inclinometers and water-based levelling sensors. This paper presents the results of preliminary tests of these components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB307  
About • paper received ※ 17 May 2021       paper accepted ※ 07 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB308 Mechanical Consolidation of the LHC Inner Triplet Magnet Supporting System for Remote Alignment 2207
 
  • F. Micolon, N. Bourcey, J-B. Deschamps, A. Herty, S. Le Naour, T. Mikkola, V. Parma, D. Ramos, V. Rude, M. Sosin
    CERN, Meyrin, Switzerland
 
  Given the high radiation area and the tight alignment tolerances, the LHC inner triplet magnets were designed to be realigned remotely using motorized supporting jacks. However, during run 2 the LHC triplet realignment system started to show an unexpected behavior with erratic load variations on the magnet supporting jacks when operated. It was then decided to freeze any further realignment of the LHC triplet magnet for the remainder of the run. Subsequently, a project team was set up at CERN to understand better the conditions leading to such unexpected behavior and to study and propose a technical consolidation for the realignment system of the LHC triplet magnet. A fully instrumented magnet string using LHC triplet spare magnets was assembled and used at CERN to provide a realistic test bench for this study. This paper reports on the work undertaken to study the triplet magnet overall realignment kinematic, the findings on the readjustment system malfunction and details the consolidation solution implemented for the next LHC run  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB308  
About • paper received ※ 18 May 2021       paper accepted ※ 07 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)