Author: Rossi, A.R.
Paper Title Page
TUPAB246 Numerical Simulation and Beam-Dynamics Study of a Hollow-Core Woodpile Coupler for Dielectric Laser Accelerators 2022
 
  • G.S. Mauro, D. Mascali, G. Sorbello, G. Torrisi
    INFN/LNS, Catania, Italy
  • A. Bacci
    INFN/LASA, Segrate (MI), Italy
  • C. De Angelis, A. Locatelli
    University of Brescia, Brescia, Italy
  • A.R. Rossi
    INFN-Milano, Milano, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  Hollow core dielectric microstructures powered by lasers represent a new and promising area of accelerator research thanks to the higher damage threshold and accelerating gradients with respect to metals at optical wavelengths. In this paper we present the design of a dielectric Electromagnetic Band Gap (EBG) mode converter for high-power coupling of the accelerating mode in Dielectric Laser Accelerators (DLAs). The design is wavelength-independent, and here we propose an implementation operating at 90.505 GHz (wavelength 3.3 mm) based on a silicon woodpile structure. The coupler is composed by two perpendicularly coupled hollow-core waveguides: a TE-like mode waveguide (excited from RF/laser power) and a TM-like mode accelerating waveguide. The structure has been numerically designed and optimized, presenting Insertion Losses (IL) < 0.3 dB and an efficient mode conversion in the operating bandwidth. The properties and effectiveness of the confined accelerating mode have been optimized in order to derive the needed accelerating gradient. The simulated electric field has been used as input for Astra beam-dynamics simulations in order to compute the beam properties.  
poster icon Poster TUPAB246 [2.209 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB246  
About • paper received ※ 18 May 2021       paper accepted ※ 27 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)