Author: Rogers, C.T.
Paper Title Page
TUPAB186 Longitudinal Dynamics in the Prototype vFFA Ring for ISIS2 1834
 
  • D.J. Kelliher, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A.P. Letchford, J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • E. Yamakawa
    JAI, Egham, Surrey, United Kingdom
 
  A vertical Fixed Field Accelerator (vFFA) is a candidate for a future high-power (MW-class) spallation source at ISIS. In order to assess the feasibility of this novel ring, a prototype is currently being designed. Here we consider the longitudinal dynamics in the prototype ring. A key requirement of future neutron spallation sources is flexibility of operation to best serve multiple target stations. Beam stacking allows a rapid cycling, high intensity machine to operate at lower repetition rates but with higher peak output. Here we show how beam stacking can be realised in the vFFA while minimising the peak RF voltage required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB186  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB208 FETS-FFA Ring Study 1901
 
  • J.-B. Lagrange, D.J. Kelliher, A.P. Letchford, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.J. Brooks
    BNL, Upton, New York, USA
  • C. Brown
    Brunel University, Middlesex, United Kingdom
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • E. Yamakawa
    JAI, Egham, Surrey, United Kingdom
 
  ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK, providing a proton beam with a power of 0.2~MW. Detailed studies are under way for a major upgrade, including the use of Fixed Field alternating gradient Accelerator (FFA). A proof-of-principle FFA ring, called FETS-FFA is planned to investigate the feasibility of this kind of machine for the required MW beam power. This paper discusses the study of the FETS-FFA ring case.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB208  
About • paper received ※ 19 May 2021       paper accepted ※ 08 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB175 nuSTORM Accelerator Challenges and Opportunities 4104
 
  • C.T. Rogers, J.-B. Lagrange
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • N. Gall
    CERN, Meyrin, Switzerland
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The nuSTORM facility uses a stored muon beam to generate a neutrino source. Muons are captured and stored in a storage ring using stochastic injection. The facility will aim to measure neutrino-nucleus scattering cross-sections with uniquely well-characterized neutrino beams; to facilitate the search for sterile neutrino and other Beyond Standard Model processes with exquisite sensitivity, and to provide a muon source that makes an excellent technology test-bed required for the development of muon beams capable of serving as a multi-TeV collider. In this paper, we describe the latest status of the development of nuSTORM, the R&D needs, and the potential for nuSTORM as a Muon Collider test facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB175  
About • paper received ※ 19 May 2021       paper accepted ※ 19 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXB05 Muon Ionization Cooling Experiment: Results & Prospects 4528
 
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  A high-energy muon collider could be the most powerful and cost-effective collider approach in the multi-TeV regime, and a neutrino source based on decay of an intense muon beam would be ideal for measurement of neutrino oscillation parameters. Muon beams may be created through the decay of pions produced in the interaction of a proton beam with a target. The muons are subsequently accelerated and injected into a storage ring where they decay producing a beam of neutrinos, or collide with counter-rotating antimuons. Cooling of the muon beam would enable more muons to be accelerated resulting in a more intense neutrino source and higher collider luminosity. Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration constructed a section of an ionization cooling channel and used it to provide the first demonstration of ionization cooling. Here the observation of ionization cooling is described. The cooling performance is studied for a variety of beam and magnetic field configurations. The outlook for muon ionization cooling demonstrations is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXB05  
About • paper received ※ 19 May 2021       paper accepted ※ 19 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)