Author: Rizzoglio, V.
Paper Title Page
MOPAB002 Risk of Halo-Induced Magnet Quenches in the HL-LHC Beam Dump Insertion 41
 
  • J.B. Potoine, A. Apollonio, E. Belli, C. Bracco, R. Bruce, M. D’Andrea, R. García Alía, A. Lechner, G. Lerner, S. Morales Vigo, S. Redaelli, V. Rizzoglio, E. Skordis, A. Waets
    CERN, Meyrin, Switzerland
  • F. Wrobel
    IES, Montpellier, France
 
  Funding: Research supported by the HL-LHC project
After the High Lu­mi­nos­ity (HL-LHC) up­grade, the LHC will be ex­posed to a higher risk of mag­net quenches dur­ing pe­ri­ods of short beam life­time. Col­li­ma­tors in the ex­trac­tion re­gion (IR6) as­sure the pro­tec­tion of mag­nets against asyn­chro­nous beam dumps, but they also in­ter­cept a frac­tion of the beam halo leak­ing from the be­ta­tron clean­ing in­ser­tion. In this paper, we as­sess the risk of quench­ing nearby quadrupoles dur­ing beam life­time drops. In par­tic­u­lar, we pre­sent an em­pir­i­cal analy­sis of halo losses in IR6 using LHC Run 2 (2015-2018) beam loss mon­i­tor mea­sure­ments. Based on these re­sults, the halo-in­duced power den­sity in mag­net coils ex­pected in HL-LHC is es­ti­mated using FLUKA Monte Carlo shower sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB002  
About • paper received ※ 19 May 2021       paper accepted ※ 13 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB368 Sigraflex® Studies for LHC CERN Beam Dump: Summary and Perspective 3571
 
  • J.M. Heredia, M. Calviani, R. Franqueira Ximenes, D. Grenier, K. Kershaw, A. Lechner, P. Andreu-Muñoz, F.-X. Nuiry, A. Perillo-Marcone, V. Rizzoglio, C. Torregrosa
    CERN, Meyrin, Switzerland
  • A. Alvaro
    SINTEF, Trondheim, Norway
  • F. Berto, S. Solfiti
    NTNU, Trondheim, Norway
 
  The Large Hadron Col­lider (LHC) beam dump (TDE) is es­sen­tial for safe and re­li­able op­er­a­tion of the col­lider. It ab­sorbs par­ti­cles ex­tracted from the ac­cel­er­a­tor when­ever re­quired. The orig­i­nal de­sign of the TDE dates from the mid 2000 and it is con­sti­tuted of an eight-me­ter-long cylin­dri­cal stain­less-steel tube, filled with low-Z car­bon-based ma­te­ri­als from dif­fer­ent grades and den­si­ties. The Sigraflex®, an ex­panded low-den­sity graphite, is em­ployed in the mid­dle sec­tion of the TDE core. Due to un­ex­pected be­hav­iour ob­served in the past LHC runs, sev­eral major up­grades were re­cently im­ple­mented in order for the TDE to be ready for LHC Run3 (2021-2024), where up to 555 MJ beam en­ergy is ex­pected to be dumped every few hours. Ac­cord­ing sim­u­la­tions, tem­per­a­tures in the Sigraflex core will reach lo­cally up to 1500°C in the reg­u­lar dump cases, and above 2300°C for fail­ure sce­nar­ios. The ob­jec­tive of this con­tri­bu­tion is to sum­ma­rize the LS2 hard­ware up­grades and the plan for the eval­u­a­tion of the Sigraflex per­for­mance dur­ing LHC Run3. This work will also de­tail the last ex­per­i­men­tal and nu­mer­i­cal find­ings ap­plied to the Sigraflex®, and pos­si­ble al­ter­na­tive ma­te­ri­als for the fu­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB368  
About • paper received ※ 18 May 2021       paper accepted ※ 11 August 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)