Author: Riemann, B.
Paper Title Page
TUPAB238 Algorithm to Analyze Complex Magnetic Structures Using a Tube Approach 1995
 
  • B. Riemann, M. Aiba
    PSI, Villigen PSI, Switzerland
 
  Modern synchrotron light sources often require sophisticated multipole field distributions that need to be realized by complex magnet structures. To pre-validate these magnet structures via simulations, the extraction procedure needs to output standard multipoles as well as fringe effects. The approach presented in this manuscript uses a volumetric grid map of the magnetic flux density as input. After computation of the reference trajectory (leapfrog integration), a large linear system is solved to compute transverse polynomial coefficients of the magnetic scalar potential in a series of interconnected thin cylinders (linear basis functions) along with that reference. The import of these coefficients into a lattice simulation is discussed using a modification of the tracking code Tracy. The shown approach is routinely used to check models of SLS 2.0 magnets for their properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB238  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)