Author: Pischalnikov, Y.M.
Paper Title Page
TUPAB333 Status of PIP-II 650 MHz Prototype Dressed Cavity Qualification 2279
 
  • G.V. Eremeev, D.J. Bice, C. Boffo, S.K. Chandrasekaran, S. Cheban, F. Furuta, I.V. Gonin, C.J. Grimm, S. Kazakov, T.N. Khabiboulline, A. Lunin, M. Martinello, N. Nigam, J.P. Ozelis, Y.M. Pischalnikov, K.S. Premo, O.V. Prokofiev, O.V. Pronitchev, G.V. Romanov, N. Solyak, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, Illinois, USA
  • M. Bagre, V. Jain, A. Puntambekar, S. Raghvendra, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • P. Bhattacharyya, S. Ghosh, S. Seth
    VECC, Kolkata, India
  • R. Kumar
    BARC, Mumbai, India
  • J. Lewis, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • T. Reid
    ANL, Lemont, Illinois, USA
  • A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Low-beta and high-beta sections of PIP-II linac will use nine low-beta cryomodules with four cavities each and four high-beta cryomodules with six cavities each. These cavities will be produced and qualified in collaboration between Fermilab and the international partner labs. Prior to their installation into prototype cryomodules, several dressed cavities, which include jacketed cavities, high power couplers, and tuners, will be qualified in STC horizontal test bed at Fermilab. After qualification of bare β = 0.9 cavities at Fermilab, several pre-production β = 0.92 and β = 0.61 cavities have been and are being fabricated and qualified. Procurements have also been started for high power couplers and tuners. In this contribution we present the current status of prototype dressed cavity qualification for PIP-II.
 
poster icon Poster TUPAB333 [6.247 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB333  
About • paper received ※ 23 May 2021       paper accepted ※ 19 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB138 Superconducting RF Gun with High Current and the Capability to Generate Polarized Electron Beams 2936
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • S.A. Belomestnykh, S. Kazakov, T.N. Khabiboulline, M. Martinello, Y.M. Pischalnikov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • J.C. Brutus, P. Inacker, Y.C. Jing, V. Litvinenko, J. Skaritka, E. Wang
    BNL, Upton, New York, USA
  • J.M. Grames, M. Poelker, R. Suleiman, E.J-M. Voutier
    JLab, Newport News, Virginia, USA
 
  High-current low-emittance CW electron beams are indispensable for nuclear and high-energy physics fixed target and collider experiments, cooling high energy hadron beams, generating CW beams of monoenergetic X-rays (in FELs) and gamma-rays (in Compton sources). Polarization of electrons in these beams provides extra value by opening a new set of observables and frequently improving the data quality. We report on the upgrade of the unique and fully functional CW SRF 1.25 MeV SRF gun, built as part of the Coherent electron Cooling (CeC) project, which has demonstrated sustained CW operation with CsK2Sb photocathodes generating electron bunches with record-low transverse emittances and record-high bunch charge exceeding 10 nC. We propose to extend the capabilities of this system to high average current of 100 milliampere in two steps: increasing the current 30-fold at each step with the goal to demonstrate reliable long-term operation of the high-current low-emittance CW SRF guns. We also propose to test polarized GaAs photocathodes in the ultra-high vacuum (UHV) environment of the SRF gun, which has never been successfully demonstrated in RF accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB138  
About • paper received ※ 25 May 2021       paper accepted ※ 29 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB343 Test Results of the Prototype SSR1 Cryomodule for PIP-II at Fermilab 4461
 
  • D. Passarelli, J. Bernardini, C. Boffo, B.M. Hanna, S. Kazakov, T.N. Khabiboulline, A. Lunin, J.P. Ozelis, M. Parise, Y.M. Pischalnikov, V. Roger, B. Squires, A.I. Sukhanov, G. Wu, V.P. Yakovlev, S. Zorzetti
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy
A prototype cryomodule containing eight Single Spoke Resonators type-1 (SSR1) operating at 325 MHz and four superconducting focusing lenses has been successfully assembled and cold tested in the framework of PIP-II project at Fermilab. The performance of cavities and focusing lenses along with test results of other cryomodule’s key parameters are presented in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB343  
About • paper received ※ 20 May 2021       paper accepted ※ 08 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)