Author: Peng, J.
Paper Title Page
THPAB185 Solution to Beam Transmission Decline in the CSNS Linac Operation Using Measurements and Simulations 4134
 
  • J. Peng, M.T. Li, X.H. Lu, X.B. Luo
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S. Fu, L. Huang, M.Y. Huang, Y. Li, Z.P. Li, S. Wang, S.Y. Xu, Y. Yuan
    IHEP, Beijing, People’s Republic of China
 
  The CSNS linac operation at its design average power currently. However, the beam transmission is declining and the beam loss is increasing during the operation. With simulations and experiments, we found there is a long longitudinal tail exist in the beam bunch output from the RFQ. And this tail caused the beam loss in the following linac. After inhibition of the longitudinal tail in the beam bunch, the beam transmission in operation can keep stable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB185  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB186 Review of Proton Linac Beam Dynamic Simulation Code 4137
 
  • X.Y. Feng, J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  CSNS-II project design a linac accelerates 40 mA H beam from 3.8 MeV to 300 MeV, which should not only overcome the space-charge effect at low energy but also have high efficiency at high energy. Therefore, lots of simulation studies should be done on a variety of codes. Each of them has its own characteristics. For example, MAD can easily match quadrupole fast while it couldn’t do the multiparticle calculation. This paper will introduce some common and efficient code used to design linac and study beam dynamic performance.  
poster icon Poster THPAB186 [0.880 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB186  
About • paper received ※ 17 May 2021       paper accepted ※ 08 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)