Author: Pauly, N.
Paper Title Page
MOPAB416 BDSIM Developments for Hadron Therapy Centre Applications 1252
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Geneva, Switzerland
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
 
  Hadron therapy centres are evolving towards reduced-footprint layouts, often featuring a single treatment room. The evaluation of beam properties, radiation protection quantities, and concrete shielding activation via numerical simulations poses new challenges that can be tackled using the numerical beam transport and Monte-Carlo code Beam Delivery Simulation (BDSIM), allowing a seamless simulation of the dynamics as a whole. Specific developments have been carried out in BDSIM to advance its efficiency toward such applications, and a detailed 4D Monte-Carlo scoring mechanism has been implemented. It produces tallies such as the spatial-energy differential fluence in arbitrary scoring meshes. The feature makes use of the generic boost::histogram library and allows an event-by-event serialisation and storage in the ROOT data format. The pyg4ometry library is extended to improve the visualisation of critical features such as the complex geometries of BDSIM models, the beam tracks, and the scored quantities. Data are converted from Geant4 and ROOT to a 3D visualisation using the VTK framework. These features are applied to a complete IBA Proteus One model.  
poster icon Poster MOPAB416 [1.575 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB416  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)