Author: Parozzi, E.G.
Paper Title Page
WEPAB187 The ENUBET Multi Momentum Secondary Beamline Design 3053
 
  • E.G. Parozzi, N. Charitonidis
    CERN, Geneva, Switzerland
  • G. Brunetti, E.G. Parozzi, F. Terranova
    Universita Milano Bicocca, MILANO, Italy
  • A. Longhin, M. Pari, F. Pupilli
    INFN- Sez. di Padova, Padova, Italy
  • A. Longhin, M. Pari
    Univ. degli Studi di Padova, Padova, Italy
  • E.G. Parozzi, F. Terranova
    INFN MIB, MILANO, Italy
 
  The aim of neutrino physics for the next decades is to detect effects due to CP violation, mass hierarchy, and search for effects beyond the Standard Model predictions. Future experiments need precise measurements of the neutrino interaction cross-sections at the ~GeV/c regime, currently limited by the exact knowledge of the initial neutrino flux on a ~10-20% uncertainty level. The ENUBET project is proposing a novel facility, capable of constraining the neutrino flux normalization through the precise monitoring of the Ke3 (K±>e+pi0nu) decay products in an instrumented decay tunnel. ENUBET can also monitor muons from the two body kaon and pion decays (nu flux) and measure the neutrino energy with a 10% precision without relying on the event reconstruction at the neutrino detector. We present here a novel design based on a broad (4-8.5 GeV/c) momentum range secondary beamline, that widen the cross-section energy range that can be explored by ENUBET. In this poster, we discuss the target optimization studies and we show the early results on the new line’s optics and the layout design. We discuss the expected performance of this line and the forthcoming activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB187  
About • paper received ※ 13 May 2021       paper accepted ※ 29 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB143 M2 Experimental Beamline Optics Studies for Next Generation Muon Beam Experiments at CERN 4041
 
  • D. Banerjee, J. Bernhard, M. Brugger, N. Charitonidis, G.L. D’Alessandro, A. Gerbershagen, E. Montbarbon, C.A. Mussolini, E.G. Parozzi, B. Rae, B.M. Veit
    CERN, Geneva, Switzerland
  • L. Gatignon
    Lancaster University, Lancaster, United Kingdom
 
  In the context of the Physics Beyond Colliders Project, various new experiments have been proposed for the M2 beamline at the CERN North Area fixed target experimental facility. The experiments include MUonE, NA64µ, and the successor to the COMPASS experiment, tentatively named AMBER/NA66. The AMBER/NA66 collaboration proposes to build a QCD facility requiring conventional muon and hadron beams for runs up to 2024 in the first phase of the experiment. MUonE aims to measure the hadronic contribution to the vacuum polarization in the context of the (gµ-2) anomaly with a setup longer than 40 m and a 160 GeV/c high intensity, low divergence muon beam. NA64µ is a muon beam program for dark sector physics requiring a 100 - 160 GeV/c muon beam with a 15-25 m long setup. All three experiments request similar beam times up to 2024 with compelling physics programs, which required launching extensive studies for integration, installation, beam optics, and background estimations. The experiments will be presented along with details of the studies performed to check their feasibility and compatibility with an emphasis on the updated optics for these next-generation muon beam experiments.  
poster icon Poster THPAB143 [14.259 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB143  
About • paper received ※ 17 May 2021       paper accepted ※ 20 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)