Author: Palmer, D.T.
Paper Title Page
THPAB170 RF Deflector Design for Rapid Proton Therapy 4086
 
  • E.J.C. Snively, G.B. Bowden, V.A. Dolgashev, Z. Li, E.A. Nanni, D.T. Palmer, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by US Department of Energy Contract No. DE-AC02-76SF00515.
Pencil beam scanning of charged particle beams is a key technology enabling high dose rate cancer therapy. The potential benefits of high-speed dose delivery include not only a reduction in total treatment time and improvements to motion management during treatment but also the possibility of enhanced healthy tissue sparing through the FLASH effect, a promising new treatment modality. We present here the design of an RF deflector operating at 2.856 GHz for the rapid steering of 150 MeV proton beams. The design utilizes a TE11-like mode supported by two posts protruding into a pillbox geometry to form an RF dipole. This configuration provides a significant enhancement to the efficiency of the structure, characterized by a transverse shunt impedance of 68 MOhm/m, as compared to a conventional TM11 deflector. We discuss simulations of the structure performance for several operating configurations including the addition of a permanent magnet quadrupole to amplify the RF-driven deflection. In addition to simulation studies, we will present preliminary results from a 3-cell prototype fabricated using four copper slabs to accommodate the non-axially symmetric cell geometry.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB170  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)