Author: Otsuka, S.
Paper Title Page
WEPAB055 Development of a Linac for Injection of Ultrashort Electron Bunches Into Laser Plasma Electron Accelerators 2725
 
  • S. Masuda, N. Kumagai, T. Masuda, Y. Otake
    JASRI, Hyogo, Japan
  • Y. Koshiba, S. Otsuka
    Waseda University, Tokyo, Japan
  • T. Sakai, T. Tanaka
    LEBRA, Funabashi, Japan
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
 
  Funding: This work is supported by JST-Mirai Program Grant Number JPMJMI17A1, Japan.
We are developing a C-band linac that produces ultrashort electron bunches as an injector for laser plasma accelerators. A plasma wave excited by a high intense ultrashort laser pulse has a wavelength of the order of 10 to 100 fs and transverse dimensions of the order of 10 to 100 um. To inject the bunch into a proper phase of the plasma wave, a length and transverse sizes of the bunch must be much smaller than the plasma wave structure. A laser triggered photo cathode electron RF-gun and a 2pi/3 mode traveling wave buncher with 24 cells for ultrashort electron bunch production have been developed based on electron beam tracking simulations that show the bunch length is less than 10 fs with a charge of 100 fC at a focus on the plasma wave. The simulations also show that sufficiently small transverse sizes of the bunch at the focus can be obtained by a Q triplet. A highly accurate timing lower than the plasma wavelength (~10fs) is required for the synchronization between the electron bunch injection and the plasma wave excitation. An RF master oscillator with low SSB phase noise (-150dBc/Hz@10MHz) has been developed for the synchronization. We will report present development status.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB055  
About • paper received ※ 19 May 2021       paper accepted ※ 15 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)