Author: O’Shea, B.D.
Paper Title Page
MOPAB137 Interaction Region Design for DWA Experiments at FACET-II 478
 
  • O. Williams, G. Andonian, A. Fukasawa, W.J. Lynn, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, Y. Sakai, M. Yadav, Y. Zhuang
    UCLA, Los Angeles, USA
  • C.I. Clarke, M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: DOE HEP Grant DE-SC0009914
The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB071 Physics Goals of DWA Experiments at FACET-II 3922
 
  • J.B. Rosenzweig, H.S. Ancelin, G. Andonian, A. Fukasawa, C.E. Hansel, G.E. Lawler, W.J. Lynn, N. Majernik, J.I. Mann, P. Manwani, Y. Sakai, O. Williams, M. Yadav
    UCLA, Los Angeles, California, USA
  • S.V. Baryshev
    Michigan State University, East Lansing, Michigan, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DOE HEP Grant DE-SC0009914,
The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071  
About • paper received ※ 25 May 2021       paper accepted ※ 28 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)