Paper | Title | Page |
---|---|---|
MOPAB137 | Interaction Region Design for DWA Experiments at FACET-II | 478 |
|
||
Funding: DOE HEP Grant DE-SC0009914 The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 17 August 2021 issue date ※ 29 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB071 | Physics Goals of DWA Experiments at FACET-II | 3922 |
|
||
Funding: This work supported by DOE HEP Grant DE-SC0009914, The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071 | |
About • | paper received ※ 25 May 2021 paper accepted ※ 28 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |