Author: Oliveira Neto, R.
Paper Title Page
TUPAB309 Alignment Verification and Monitoring Strategies for the Sirius Light Source 2210
 
  • R. Oliveira Neto, R. Junqueira Leão, L.R. Leão
    CNPEM, Campinas, SP, Brazil
 
  The approach for the alignment of Sirius is the use of portable coordinate metrology instruments in a common reference, via a network of stable points previously surveyed. This type of network is composed of a dense distribution of points materialized in the form of embedded target holders on the special slab and radiation shielding. Phenomena such as ground movements, temperature gradients and vibrations could lead to misalignment of the components, possibly causing a degradation in machine performance. Therefore, the relative positions of the accelerator magnets need to be periodically verified along with the structures surrounding it to ensure a good reference to future alignment operations. This paper will present the status of Sirius monitoring systems, including data from the first months of operation of the hydrostatic levelling sensors. Also, possibilities with simplified network measurements for detecting structural deformations and assessing its stability will be presented, along with a proposal of a photogrammetric reconstruction of the alignment profile of the storage ring. Finally, it will be shown a compilation of analysis on the deformation of the Sirius facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB309  
About • paper received ※ 20 May 2021       paper accepted ※ 01 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXB06 Results of the First Alignment Run for Sirius 3728
 
  • R. Junqueira Leão, R. Oliveira Neto
    CNPEM, Campinas, SP, Brazil
  • H. Geraissate, F. Rodrigues, G.R. Rovigatti de Oliveira
    LNLS, Campinas, Brazil
 
  It is widely known that the position of particle accelerator components is critical for its performance. For the latest generation light sources, whose magnetic lattice is optimized for achieving very low emittance, the tolerable misalignments are in the order of a few dozen micrometers. Due to the perimeter of these machines, the requirements push the limits of large-volume dimensional metrology and associated instruments and techniques. Recently a fine alignment campaign of the Sirius accelerators was conducted following the pre-alignment performed during the installation phase. To conform with the strict relative positioning demands, measurement good practices were followed, and several 3D metrology procedures were developed. Also, to improve positioning resolution, high rigidity translation devices were produced. Finally, the special target holders designed as removable fiducials for the magnets were revisited to assure maximum reliability. Data processing algorithms were implemented to evaluate the alignment results in a robust and agile manner. This paper will present the final positioning errors for Sirius magnets with an expression of the estimated uncertainty.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXB06  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)