Author: Nasse, M.J.
Paper Title Page
MOPAB280 Split Ring Resonator Experiment - Simulation Results 888
 
  • J. Schäfer, B. Härer, A. Malygin, A.-S. Müller, M. Nabinger, M.J. Nasse, T. Schmelzer, M. Schuh, T. Windbichler
    KIT, Karlsruhe, Germany
 
  Funding: Supported by "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology (KSETA)" and European Union’s Horizon 2020 Research and Innovation programme.
FLUTE (Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment) is a com­pact linac-based test fa­cil­ity for ac­cel­er­a­tor and di­ag­nos­tics R&D. An ex­am­ple for a new ac­cel­er­a­tor di­ag­nos­tics tool cur­rently stud­ied at FLUTE is the split-ring-res­onator (SRR) ex­per­i­ment, which aims to mea­sure the lon­gi­tu­di­nal bunch pro­file of fs-scale elec­tron bunches. Laser-gen­er­ated THz ra­di­a­tion is used to ex­cite a high fre­quency os­cil­lat­ing elec­tro­mag­netic field in the SRR. Par­ti­cles pass­ing through the SRR gap are time-de­pen­dently de­flected in the ver­ti­cal plane, which al­lows a ver­ti­cal streak­ing of an elec­tron bunch. This prin­ci­ple al­lows a di­ag­no­sis of the lon­gi­tu­di­nal bunch pro­file in the fem­tosec­ond time do­main and will be tested at FLUTE. This con­tri­bu­tion pre­sents an overview of the SRR ex­per­i­ment and the re­sults of var­i­ous track­ing sim­u­la­tions for dif­fer­ent sce­nar­ios as a func­tion of laser pulse length and bunch charge. Based on these re­sults pos­si­ble work­ing points for the ex­per­i­ments at FLUTE will be pro­posed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB280  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB293 Electro-Optical Diagnostics at KARA and FLUTE - Results and Prospects 927
 
  • G. Niehues, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, M.M. Patil, R. Ruprecht, M. Schuh, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: S.F. was funded by BMBF contract No. 05K16VKA, C. W. by BMBF contract number 05K19VKD. G.N. and E.B. acknowledge support by the Helmholtz President’s strategic fund IVF "Plasma Accelerators".
Elec­tro-op­ti­cal (EO) meth­ods are nowa­days well-proven di­ag­nos­tic tools, which are uti­lized to de­tect THz fields in count­less ex­per­i­ments. The world’s first near-field EO sam­pling mon­i­tor at an elec­tron stor­age ring was de­vel­oped and in­stalled at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor) and op­ti­mized to de­tect lon­gi­tu­di­nal bunch pro­files. This ex­per­i­ment with other di­ag­nos­tic tech­niques builds a dis­trib­uted, syn­chro­nized sen­sor net­work to gain com­pre­hen­sive data about the phase-space of elec­tron bunches as well as the pro­duced co­her­ent syn­chro­tron ra­di­a­tion (CSR). These mea­sure­ments fa­cil­i­tate stud­ies of phys­i­cal con­di­tions to pro­vide, at the end, in­tense and sta­ble CSR in the THz range. At KIT, we also op­er­ate FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment), a new com­pact ver­sa­tile lin­ear ac­cel­er­a­tor as a test fa­cil­ity for novel tech­niques and di­ag­nos­tics. There, EO di­ag­nos­tics will be im­ple­mented to open up pos­si­bil­i­ties to eval­u­ate and com­pare new tech­niques for lon­gi­tu­di­nal bunch di­ag­nos­tics. In this con­tri­bu­tion, we will give an overview of re­sults achieved, the cur­rent sta­tus of the EO di­ag­nos­tic se­tups at KARA and FLUTE and dis­cuss fu­ture prospects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB293  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB294 Implementing Electro-Optical Diagnostics for Measuring the CSR Far-Field at KARA 931
 
  • C. Widmann, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, C. Sax, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
  • C. Mai
    DELTA, Dortmund, Germany
 
  Funding: This work was supported by BMBF ErUM-Pro project 05K19 STARTRAC, C.W. was funded under contract No. 05K19VDK, C.M. under contract No. 05K19PEC, S.F. under contract No. 05K16VKA.
For mea­sur­ing the tem­po­ral pro­file of the co­her­ent syn­chro­tron ra­di­a­tion (CSR) at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor) an ex­per­i­men­tal setup based on elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) is cur­rently being im­ple­mented. The EOSD tech­nique al­lows sin­gle-shot, phase-sen­si­tive mea­sure­ments of the far-field ra­di­a­tion on a turn-by-turn basis at rates in the MHz range. There­fore, the re­sult­ing THz ra­di­a­tion from the dy­nam­ics of the bunch evo­lu­tion, e.g. the mi­crobunch­ing, can be ob­served with high tem­po­ral res­o­lu­tion. This far-field setup is part of the dis­trib­uted sen­sor net­work at KARA. Ad­di­tion­ally to the in­for­ma­tion ac­quired from the near-field EOSD spec­tral de­cod­ing and the hor­i­zon­tal bunch pro­file mon­i­tor, it en­ables to mon­i­tor the lon­gi­tu­di­nal phase-space of the bunch. In this con­tri­bu­tion, the char­ac­ter­i­za­tion of the far-field setup is sum­ma­rized and its im­ple­men­ta­tion is dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB294  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB087 Full Characterization of the Bunch-Compressor Dipoles for FLUTE 1585
 
  • Y. Nie, A. Bernhard, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, Y. Tong
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment (FLUTE) is a KIT-op­er­ated linac-based test fa­cil­ity for ac­cel­er­a­tor re­search and de­vel­op­ment as well as a com­pact, ul­tra-broad­band and short-pulse ter­a­hertz (THz) source. As a key com­po­nent of FLUTE, the bunch com­pres­sor (chi­cane) con­sist­ing of four spe­cially de­signed dipoles will be used to com­press the 40-50 MeV elec­tron bunches after the linac down to sin­gle fs bunch length. The max­i­mum ver­ti­cal mag­netic field of the dipoles reach 0.22 T, with an ef­fec­tive length of 200 mm. The good field re­gion is ±40 mm and ±10.5 mm in the hor­i­zon­tal and ver­ti­cal di­rec­tion, re­spec­tively. The lat­est mea­sure­ment re­sults of the dipoles in terms of field ho­mo­gene­ity, ex­ci­ta­tion and field re­pro­ducibil­ity within the good field re­gions will be re­ported, which meet the pre­de­fined spec­i­fi­ca­tions. The mea­sured 3D mag­netic field dis­tri­b­u­tions have been used to per­form beam dy­nam­ics sim­u­la­tions of the bunch com­pres­sor. Ef­fects of the real field prop­er­ties on the beam dy­nam­ics, which are dif­fer­ent from that of the ASTRA built-in di­pole field, will be dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB087  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB251 Impedance Studies of a Corrugated Pipe for KARA 2039
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC and the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
At the KIT stor­age ring KARA (KArl­sruhe Re­search Ac­cel­er­a­tor) it is planned to in­stall an im­ped­ance ma­nip­u­la­tion struc­ture in a ver­sa­tile cham­ber to study and even­tu­ally con­trol the in­flu­ence of an ad­di­tional im­ped­ance on the beam dy­nam­ics and the emit­ted co­her­ent syn­chro­tron ra­di­a­tion. For this pur­pose the im­ped­ance of a cor­ru­gated pipe is under in­ves­ti­ga­tion. In this con­tri­bu­tion, we pre­sent first re­sults of sim­u­la­tions show­ing the im­pact of dif­fer­ent struc­ture pa­ra­me­ters on its im­ped­ance and wake po­ten­tial.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB255 Longitudinal Beam Dynamics and Coherent Synchrotron Radiation at cSTART 2050
 
  • M. Schwarz, E. Bründermann, D. El Khechen, B. Härer, A. Malygin, A.-S. Müller, M.J. Nasse, A.I. Papash, R. Ruprecht, J. Schäfer, M. Schuh, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  The com­pact STor­age ring for Ac­cel­er­a­tor Re­search and Tech­nol­ogy (cSTART) pro­ject aims to store elec­tron bunches of LWFA-like beams in a very large mo­men­tum ac­cep­tance stor­age ring. The pro­ject will be re­al­ized at the Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT, Ger­many). Ini­tially, the Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment (FLUTE), a source of ul­tra-short bunches, will serve as an in­jec­tor for cSTART to bench­mark and em­u­late laser-wake­field ac­cel­er­a­tor-like beams. In a sec­ond stage a laser-plasma ac­cel­er­a­tor will be used as an in­jec­tor, which is being de­vel­oped as part of the ATHENA pro­ject in col­lab­o­ra­tion with DESY and Helmholtz In­sti­tute Jena (HIJ). With an en­ergy of 50 MeV and damp­ing times of sev­eral sec­onds, the elec­tron beam does not reach equi­lib­rium emit­tance. Fur­ther­more, the crit­i­cal fre­quency of syn­chro­tron ra­di­a­tion is 53 THz and in the same order as the bunch spec­trum, which im­plies that the en­tire bunch ra­di­ates co­her­ently. We per­form lon­gi­tu­di­nal par­ti­cle track­ing sim­u­la­tions to in­ves­ti­gate the evo­lu­tion of the bunch length and spec­trum as well as the emit­ted co­her­ent syn­chro­tron ra­di­a­tion. Fi­nally, dif­fer­ent op­tions for the RF sys­tem are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB255  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB103 Systematic Beam Parameter Studies at the Injector Section of FLUTE 2837
 
  • T. Schmelzer, E. Bründermann, D. Hoffmann, I. Križnar, S. Marsching, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski, T. Windbichler
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology (KSETA)"
FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment) is a com­pact linac-based test fa­cil­ity for ac­cel­er­a­tor R&D and source of in­tense THz ra­di­a­tion for pho­ton sci­ence. In prepa­ra­tion for the next ex­per­i­ments, the elec­tron beam of the in­jec­tor sec­tion of FLUTE has been char­ac­ter­ized. In sys­tem­atic stud­ies the elec­tron beam pa­ra­me­ters, e.g., beam en­ergy and emit­tance, are mea­sured with sev­eral di­ag­nos­tic sys­tems. This knowl­edge al­lows the es­tab­lish­ment of dif­fer­ent op­er­a­tion set­tings and the op­ti­miza­tion of elec­tron beam pa­ra­me­ters for fu­ture ex­per­i­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB103  
About • paper received ※ 19 May 2021       paper accepted ※ 01 September 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB289 Machine Learning Based Spatial Light Modulator Control for the Photoinjector Laser at FLUTE 3332
 
  • C. Xu, E. Bründermann, A.-S. Müller, M.J. Nasse, A. Santamaria Garcia, C. Sax, C. Widmann
    KIT, Karlsruhe, Germany
  • A. Eichler
    DESY, Hamburg, Germany
 
  Funding: C. Xu acknowledges the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
FLUTE (Fer­n­in­frarot Linac- und Test-Ex­per­i­ment) at KIT is a com­pact linac-based test fa­cil­ity for novel ac­cel­er­a­tor tech­nol­ogy and a source of in­tense THz ra­di­a­tion. FLUTE is de­signed to pro­vide a wide range of elec­tron bunch charges from the pC- to nC-range, high elec­tric fields up to 1.2 GV/m, and ul­tra-short THz pulses down to the fs-timescale. The elec­trons are gen­er­ated at the RF pho­toin­jec­tor, where the elec­tron gun is dri­ven by a com­mer­cial ti­ta­nium sap­phire laser. In this kind of setup the elec­tron beam prop­er­ties are de­ter­mined by the pho­toin­jec­tor, but more im­por­tantly by the char­ac­ter­is­tics of the laser pulses. Spa­tial light mod­u­la­tors can be used to trans­versely and lon­gi­tu­di­nally shape the laser pulse, of­fer­ing a flex­i­ble way to shape the laser beam and sub­se­quently the elec­tron beam, in­flu­enc­ing the pro­duced THz pulses. How­ever, non­lin­ear ef­fects in­her­ent to the laser ma­nip­u­la­tion (trans­porta­tion, com­pres­sion, third har­monic gen­er­a­tion) can dis­tort the orig­i­nal pulse. In this paper we pro­pose to use ma­chine learn­ing meth­ods to ma­nip­u­late the laser and elec­tron bunch, aim­ing to gen­er­ate tai­lor-made THz pulses. The method is demon­strated ex­per­i­men­tally in a test setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB331 Application of KALYPSO as a Diagnostic Tool for Beam and Spectral Analysis 3451
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
KA­LYPSO is a novel de­tec­tor ca­pa­ble of op­er­at­ing at frame rates up to 12 MHz de­vel­oped and tested at the in­sti­tute of data pro­cess­ing and elec­tron­ics (IPE) and em­ployed at Karl­sruhe Re­search Ac­cel­er­a­tor (KARA) which is part of the Test Fa­cil­ity and Syn­chro­tron Ra­di­a­tion Source KIT. This de­tec­tor con­sists of sil­i­con, In­GaAs, PbS, or PbSe line array sen­sor with spec­tral sen­si­tiv­ity from 350 nm to 5000 nm. The un­prece­dented frame rate of this de­tec­tor is achieved by a cus­tom-de­signed ASIC read­out chip. The FPGA-read­out ar­chi­tec­ture en­ables con­tin­u­ous data ac­qui­si­tion and real-time data pro­cess­ing. Such a de­tec­tor has var­i­ous ap­pli­ca­tions in the fields of beam di­ag­nos­tics and spec­tral analy­sis. KA­LYPSO is cur­rently em­ployed at var­i­ous syn­chro­tron fa­cil­i­ties for elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) to study the lon­gi­tu­di­nal pro­file of the elec­tron beam, to study the en­ergy spread of the elec­tron beam, tun­ing of free-elec­tron lasers (FELs), and also in char­ac­ter­iz­ing laser spec­tra. This con­tri­bu­tion will pre­sent an overview of the re­sults from the men­tioned ap­pli­ca­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB331  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB251 Efficient Terahertz Generation by Tilted-Pulse-Front Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE 4299
 
  • M. Nabinger, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, J. Schäfer, T. Schmelzer, N.J. Smale
    KIT, Karlsruhe, Germany
  • M.M. Dehler, R. Ischebeck, M. Moser, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work is co-funded via the European Union’s H2020 research and innovation program, GA No 730871, ARIES.
A com­pact, lon­gi­tu­di­nal di­ag­nos­tics for fs-scale elec­tron bunches using a THz elec­tric-field tran­sient in a split-ring res­onator (SRR) for streak­ing will be tested at the Fer­n­in­frarot Linac- Und Test- Ex­per­i­ment (FLUTE). For this new streak­ing tech­nique, in­ten­sive THz pulses are re­quired, which will be gen­er­ated by laser-based op­ti­cal rec­ti­fi­ca­tion. We pre­sent a setup for gen­er­at­ing THz pulses using tilted-pulse-front pump­ing in lithium nio­bate at room tem­per­a­ture. Ex­cited by an 800 nm Ti:Sa pump laser with 35 fs band­width-lim­ited pulse length, con­ver­sion ef­fi­cien­cies up to 0.027% were achieved. Fur­ther­more, the sta­tus of the SRR ex­per­i­ment is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC03 Modern Ultra-Fast Detectors for Online Beam Diagnostics 4540
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, W. Wang, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
Syn­chro­tron light sources op­er­ate with bunch rep­e­ti­tion rates in the MHz regime. The lon­gi­tu­di­nal and trans­verse beam dy­nam­ics of these elec­tron bunches can be in­ves­ti­gated and char­ac­ter­ized by ex­per­i­ments em­ploy­ing lin­ear array de­tec­tors. To im­prove the per­for­mance of mod­ern beam di­ag­nos­tics and over­come the lim­i­ta­tions of com­mer­cially avail­able de­tec­tors, we have at KIT de­vel­oped KA­LYPSO, a de­tec­tor sys­tem op­er­at­ing with an un­prece­dented frame rate of up to 12 MHz. To fa­cil­i­tate the in­te­gra­tion in dif­fer­ent ex­per­i­ments, a mod­u­lar ar­chi­tec­ture has been uti­lized. Dif­fer­ent semi­con­duc­tor mi­crostrip sen­sors based on Si, In­GaAs, PbS, and PbSe can be con­nected to the cus­tom-de­signed low noise front-end ASIC to op­ti­mize the quan­tum ef­fi­ciency at dif­fer­ent pho­ton en­er­gies, rang­ing from near-UV, vis­i­ble, and up to near-IR. The front-end elec­tron­ics are in­te­grated within a het­ero­ge­neous DAQ con­sist­ing of FPGAs and GPUs, which al­lows the im­ple­men­ta­tion of real-time data pro­cess­ing. This de­tec­tor is cur­rently in­stalled at KARA, Eu­ro­pean XFEL, FLASH, Soleil, DELTA. In this con­tri­bu­tion, we pre­sent the de­tec­tor ar­chi­tec­ture, the per­for­mance re­sults, and the on­go­ing tech­ni­cal de­vel­op­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)