Author: Musumeci, P.
Paper Title Page
TUPAB417 Pushing Spatial Resolution Limits In Single-Shot Time-Resolved Transmission Electron Microscopy at the UCLA Pegasus Laboratory 2506
 
  • P.E. Denham, P. Musumeci
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOESTTR grant No. DE-SC0013115 and by by the National Science Foundation under STROBE Science and Technology Center Grant No. DMR-1548924
We present the design of a high-speed single shot relativistic electron microscope planned for implementation at the UCLA PEGASUS Laboratory capable of imaging with less than 30~nm spatial resolution and image acquisition time on the order of 10~ps. This work is based on a multi-cavity acceleration scheme for producing relativistic beams (3.75 MeV) with suppressed rms energy spread (σδ ≈5e-5), and a means to reduce smooth space charge aberrations by generating a quasi-optimal 4D particle distribution at the sample plane. start-to-end simulation results are used to validate the entire setup. Ultimately, a feasible working point is demonstrated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB417  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB072 PAX: A Plasma-Driven Attosecond X-Ray Source 2755
 
  • C. Emma, J. Cryan, M.J. Hogan, K. Larsen, J.P. MacArthur, A. Marinelli, G.R. White, X.L. Xu
    SLAC, Menlo Park, California, USA
  • A.C. Fisher, R.M. Hessami, P. Musumeci
    UCLA, Los Angeles, California, USA
  • R. Robles
    Stanford University, Stanford, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. This work was also partially supported by DOE grant DESC0009914
Plasma accelerators can generate ultra high brightness electron beams which open the door to light sources with smaller physical footprint and properties unachievable with conventional accelerator technology. In this work * we show that electron beams from Plasma WakeField Accelerators (PWFAs) can generate coherent tunable soft X-ray pulses with TW peak power and duration of tens of attoseconds in a meter-length undulator. These X-ray pulses are an order of magnitude more powerful, shorter and can be produced with better stability than state-of-the-art X-ray Free Electron Lasers (XFELs). The X-ray emission in this approach is driven by coherent radiation from a pre-bunched, near Mega Ampere (MA) current electron beam of attosecond duration rather than the SASE FEL process starting from noise. This approach significantly relaxes the restrictive requirements on emittance, energy spread, and pointing stability which has thus far hindered the realization of a high-gain FEL driven by a plasma accelerator. We discuss the approach and progress towards the experimental realization of this concept at the FACET-II accelerator facility.
* C. Emma, X. Xu, A. Fisher, J. P. MacArthur, J. Cryan, M. J. Hogan, P. Musumeci, G. White, A. Marinelli, "Terawatt attosecond X-ray source driven by a plasma accelerator", arXiv:2011.07163 (2020)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB072  
About • paper received ※ 20 May 2021       paper accepted ※ 24 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)