Paper | Title | Page |
---|---|---|
WEPAB029 | Challenges for the Interaction Region Design of the Future Circular Collider FCC-ee | 2668 |
|
||
Funding: This work was partially supported by the EC HORIZON 2020 project FCC-IS, grant agreement n.951754, and by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-76SF-00515. The FCC-ee is a proposed future high-energy, high-intensity and high precision lepton collider. Here, we present the latest developments for the FCC-ee interaction regions, which shall ensure optimum conditions for the particle physics experiments. We discuss measures of background reduction and a revised interaction region layout including a low impedance compact beam chamber design. We also discuss the possible impact of the radiation generated in the interaction region including beamstrahlung. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB029 | |
About • | paper received ※ 11 May 2021 paper accepted ※ 23 June 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB143 | M2 Experimental Beamline Optics Studies for Next Generation Muon Beam Experiments at CERN | 4041 |
|
||
In the context of the Physics Beyond Colliders Project, various new experiments have been proposed for the M2 beamline at the CERN North Area fixed target experimental facility. The experiments include MUonE, NA64µ, and the successor to the COMPASS experiment, tentatively named AMBER/NA66. The AMBER/NA66 collaboration proposes to build a QCD facility requiring conventional muon and hadron beams for runs up to 2024 in the first phase of the experiment. MUonE aims to measure the hadronic contribution to the vacuum polarization in the context of the (gµ-2) anomaly with a setup longer than 40 m and a 160 GeV/c high intensity, low divergence muon beam. NA64µ is a muon beam program for dark sector physics requiring a 100 - 160 GeV/c muon beam with a 15-25 m long setup. All three experiments request similar beam times up to 2024 with compelling physics programs, which required launching extensive studies for integration, installation, beam optics, and background estimations. The experiments will be presented along with details of the studies performed to check their feasibility and compatibility with an emphasis on the updated optics for these next-generation muon beam experiments. | ||
![]() |
Poster THPAB143 [14.259 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB143 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 20 July 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |