Author: Mohanty, S.K.
Paper Title Page
TUPAB034 Development of Multi-Alkali Antimonides Photocathodes for High-Brightness RF Photoinjectors 1416
 
  • S.K. Mohanty, M. Krasilnikov, A. Oppelt, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Guerini Rocco, C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  Multi-alkali antimonide-based photocathodes are suitable candidate for the electron sources of next-generation high brightness RF photoinjectors due to their excellent photoemissive properties especially, like low thermal emittances and high sensitivity to visible light. The former stands out, paving the way towards CW operations. Based on the previous successful development of Cesium Telluride photocathodes, we are now channelling our efforts toward an R&D activity focused on KCsSb and NaKSb(Cs) photocathodes. Parallel to that R&D activity, we have installed a new dedicated photocathode production system at the INFN-LASA to start the preparation of these photocathodes for their test in the PITZ photoinjector at DESY in Zeuthen. In this paper, detailed experimental results obtained from the KCsSb, along with a preliminary result from the NaKSb(Cs) photocathode material as well as the status of the overall project are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB034  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB040 Characterization of Low Emittance Electron Beams Generated by Transverse Laser Beam Shaping 2690
 
  • M. Groß, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, C. Koschitzki, M. Krasilnikov, X. Li, O. Lishilin, D. Melkumyan, S.K. Mohanty, R. Niemczyk, A. Oppelt, H.J. Qian, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • Y. Chen, G. Loisch
    DESY, Hamburg, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Linac based X-ray free electron laser demand a high beam quality from the electron source, therefore RF photoinjectors are used to generate the electron bunches for state of the art beam brightness. One important figure of merit for these injectors is the transverse emittance of the generated electron beam, which can be minimized by shaping the photocathode laser pulses. Best performance can be achieved with ellipsoidal laser pulses, but 3D shaping is technically challenging. Typically, a quasi-uniform transverse laser profile is truncated from the Gaussian profile generated by the laser with an aperture to reduce the transverse nonlinear space charge forces. This is investigated in detail by optimizing the laser transverse profile at the Photoinjector Test facility at DESY in Zeuthen (PITZ), where photoinjector R&D is conducted for the E-XFEL and FLASH free electron lasers at DESY in Hamburg. In this contribution we present experimental results at high acceleration gradients (up to 60 MV/m) for both 250 pC and 500 pC. For a bunch charge of 500 pC an emittance reduction of about 30% compared to the commonly used transverse flat-top laser distribution was achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB040  
About • paper received ※ 17 May 2021       paper accepted ※ 02 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB115 Beam Preparation with Temporally Modulated Photocathode Laser Pulses for a Seeded THz FEL 2866
 
  • G.Z. Georgiev, N. Aftab, P. Boonpornprasert, J. Good, M. Groß, C. Koschitzki, M. Krasilnikov, X. Li, O. Lishilin, A. Lueangaramwong, D. Melkumyan, S.K. Mohanty, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • N. Chaisueb
    Chiang Mai University, Chiang Mai, Thailand
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The need for carrier-envelope-phase (CEP) stable THz pump pulses is recognized at many pump-probe experiments at the European XFEL. At the Photo Injector Test Facility at DESY in Zeuthen (PITZ), a proof-of-principle experiment of an accelerator-based THz FEL source is in preparation. Since the CEP stability of FEL pulses is not guaranteed in the SASE regime, a seeding scheme is needed. A common scheme for seeding is to drive the microbunching process with external laser pulses, which are power-limited in the THz range. Alternatively, a pre-bunched beam, generated for example by applying a temporally modulated photocathode laser pulse, can be used to drive the FEL. The beam dynamics with such a seeding method are studied with ASTRA tracking code simulations with space-charge forces as well as experimentally. The results of these studies are shown and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB115  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)