Author: Middendorf, M.E.
Paper Title Page
MOPAB146 Status of the C-Band Engineering Research Facility (CERF-NM) Test Stand Development at LANL 509
 
  • D. Gorelov
    Private Address, Los Alamos, USA
  • R.L. Fleming, S.K. Lawrence, J.W. Lewellen, D. Perez, M.E. Schneider, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • M.E. Middendorf
    ANL, Lemont, Illinois, USA
 
  Funding: LDRD-DR Project 20200057DR
C-Band structures research is of increasing interest to the accelerator community. The RF frequency range of 4-6 GHz gives the opportunity to achieve significant increase in the accelerating gradient, and having the wakefields at the manageable levels, while keeping the geometric dimensions of the structure technologically convenient. Strong team of scientists, including theorists researching properties of metals under stressful thermal conditions and high electromagnetic fields, metallurgists working with copper as well as alloys of interest, and accelerator scientists developing new structure designs, is formed at LANL to develop a CERF-NM facility. A 50 MW, 5.712 GHz Canon klystron, was purchased in 2019, and laid the basis for this facility. As of Jan-21, the construction of the Test Stand has been finished and the high gradient processing of the waveguide components has been started. Future plans include high gradient testing of various accelerating structures, including benchmark C-band accelerating cavity, a proton ß=0.5 cavity, and cavities made from different alloys. An upgrade to the facility is planned to allow for testing accelerator cavities at cryogenic temperatures.
 
poster icon Poster MOPAB146 [3.778 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB146  
About • paper received ※ 17 May 2021       paper accepted ※ 26 May 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB341 First C-Band High Gradient Cavity Testing Results at LANL 1057
 
  • E.I. Simakov, R.L. Fleming, D. Gorelov, T.A. Jankowski, M.F. Kirshner, J.W. Lewellen, J.D. Pizzolatto, M.E. Schneider, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • X. Lu, E.A. Nanni, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • M.E. Middendorf
    ANL, Lemont, Illinois, USA
 
  Funding: Los Alamos National Laboratory LDRD Program.
This poster will report the results of high gradient testing of the two proton β=0.5 C-band accelerating cavities. The cavities for proton acceleration were fabricated at SLAC and tested at high gradient C-band accelerator test stand at LANL. One cavity was made of copper, and the second was made of a copper-silver alloy. LANL test stand was constructed around a 50 MW, 5.712 GHz Canon klystron and is capable to provide power for conditioning single cell accelerating cavities for operation at surface electric fields up to 300 MV/m. These β=0.5 C-band cavities were the first two cavities tested on LANL C-band test stand. The presentation will report achieved gradients, breakdown probabilities, and other characteristics measured during the high power operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB341  
About • paper received ※ 19 May 2021       paper accepted ※ 25 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB296 The Spallation Neutron Source Normal Conducting Linac RF System Design for the Proton Power Upgrade Project 4383
 
  • J.S. Moss, M.T. Crofford, S.W. Lee, G.D. Toby
    ORNL, Oak Ridge, Tennessee, USA
  • M.E. Middendorf
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725.
The Proton Power Upgrade (PPU) project at the Spallation Neutron Source will double the available proton beam power from 1.4 to 2.8 MW by increasing the beam energy from 1.0 to 1.3 GeV and the beam current from 26 to 38 mA. The increase in beam current resulted in the need to redesign the existing normal conducting linac (NCL) RF Systems. High-power testing of the existing NCL RF Systems configured to accelerate PPU-level beam provided the data used to make the final design decisions. This paper describes the development and execution of those in-situ tests and the subsequent results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB296  
About • paper received ※ 17 May 2021       paper accepted ※ 22 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)