Author: Meng, W.
Paper Title Page
MOPAB014 First High Spin-Flip Efficiency for High Energy Polarized Protons 84
 
  • H. Huang, J. Kewisch, C. Liu, A. Marusic, W. Meng, F. Méot, P. Oddo, V. Ptitsyn, V.H. Ranjbar, T. Roser
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In order to minimize the systematic errors for the Relativistic Heavy Ion Collider (RHIC) spin physics experiments, flipping the spin of each bunch of protons during the stores is needed. Experiments done with single RF magnet at energies less than 2 GeV have demonstrated a spin-flip efficiency over 99%. At high energy colliders with Siberian snakes, a single magnet spin flipper does not work because of the large spin tune spread and the generation of multiple, overlapping resonances. Over past decade, RHIC spin flipper design has evolved and a sophisticated spin flipper, constructed of nine-dipole magnets, was developed to flip the spin in RHIC. A special optics choice was also used to make the spin tune spread very small. In recent experiment, 97% spin-flip efficiency was measured at both 24 and 255 GeV for the first time. The results show that efficient spin flipping can be achieved at high energies.
 
poster icon Poster MOPAB014 [0.984 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB014  
About • paper received ※ 16 May 2021       paper accepted ※ 08 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)