Paper | Title | Page |
---|---|---|
MOPAB052 | Study of Beam Transmission Efficiency in Injection and Ramping Process of the HEPS Booster | 225 |
|
||
A high-bunch-charge mode, with a bunch charge of approximately 14.4 nC at 200 mA, has been proposed for the storage ring of High Energy Photon Source (HEPS). In order to reduce the bunch charge requirement to the injector, high-energy accumulation in the HEPS booster is proposed to combine with the on-axis swap-out injection. This allows reducing the requirement of bunch charge accelerated in HEPS booster (500 MeV-6 GeV) from over 14.4 nC to about 5 nC. It is expected that the overall transmission efficiency during the low energy injection and ramping process of the booster should be higher than 80% to fulfill the requirement. In this paper, we present the simulation results of transmission efficiency and potential improvement measures. | ||
Poster MOPAB052 [0.362 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB052 | |
About • | paper received ※ 13 May 2021 paper accepted ※ 26 May 2021 issue date ※ 15 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB053 | Progress of Lattice Design and Physics Studies on the High Energy Photon Source | 229 |
|
||
Funding: Work supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure and NSFC (11922512) The High Energy Photon Source (HEPS) is a 34-pm, 1360-m storage ring light source being built in the suburb of Beijing, China. The HEPS construction started in mid-2019. While the physics design has been basically determined, modifications on the HEPS accelerator physics design have been made since 2019, in order to deal with challenges emerging from the technical and engineering designs. In this paper, we will introduce the new storage ring lattice and injector design, and also present updated results of related physics issues, including impedance and collective effects, lattice calibration, insertion device effects, injection design studies, etc. |
||
Poster MOPAB053 [0.699 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053 | |
About • | paper received ※ 10 May 2021 paper accepted ※ 24 May 2021 issue date ※ 17 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB003 | Application of Generalized Gaussian Distribution in the Processing the Wire Scanner Data | 3759 |
|
||
Wire scanners are widely used for measuring beam emittance in both electron and hadron accelerators. Gaussian fitting is the most commonly used method in processing the wire scanner data. But in hadron machines, beams are normally not gaussian distribution due to the action of nonlinear forces such as space charge effect. Under these circumstances, there would be big deviations if the wire scanner data was still fitted with gaussian distributions. This paper introduces generalized Gaussian distribution in the processing the wire scanner data measured in the ADS injector-I. The results using different fitting method will be compared. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB003 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 18 June 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |