Paper | Title | Page |
---|---|---|
MOPAB137 | Interaction Region Design for DWA Experiments at FACET-II | 478 |
|
||
Funding: DOE HEP Grant DE-SC0009914 The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 17 August 2021 issue date ※ 29 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB148 | Liénard-Wiechert Numerical Radiation Modeling for Plasma Acceleration Experiments at FACET-II | 517 |
|
||
Funding: This work was supported by DE-SC0009914 (UCLA) and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1. Future plasma acceleration experiments at FACET-II will measure betatron radiation in order to provide single-shot non-destructive beam diagnostics. We discuss three models for betatron radiation: a new idealized particle tracking code with Liénard-Wiechert radiation, a Quasi-Static Particle-in-Cell (PIC) code with Liénard-Wiechert radiation, and a full PIC code with radiation computed via a Monte-Carlo QED Method. Predictions of the three models for the E-310 experiment are presented and compared. Finally, we discuss beam parameter reconstruction from the double differential radiation spectrum. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB148 | |
About • | paper received ※ 24 May 2021 paper accepted ※ 01 June 2021 issue date ※ 17 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB150 | Optimization of the Gain Medium Delivery System for an X-Ray Laser Oscillator | 524 |
|
||
Funding: This work was supported by DE-SC0009914. X-ray laser oscillator, dubbed XLO, is a recently proposed project at SLAC to build the first population inversion X-ray laser. XLO utilizes a train of XFEL SASE pulses to pump atomic core-states. The resulting amplified spontaneous emission radiation is recirculated in a backscattering Bragg cavity and subsequently amplified. XLO could provide fully coherent, transform-limited X-ray pulses with 50 meV bandwidth and 1e10 photons. Currently, XLO is being considered for operation at the copper K-alpha line at 8048 eV. In this work, we focus on the optimization of gain medium delivery in the XLO cavity. We consider a fast, subsonic jet of copper nitrate solution, moving through a cylindrical nozzle. We focus on the nozzle geometry optimization and possible diagnostics of the jet-XFEL interaction point. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB150 | |
About • | paper received ※ 24 May 2021 paper accepted ※ 18 June 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB146 | High Brightness Electron Beams from Dragon Tail Injection and the E-312 Experiment at FACET-II | 1728 |
|
||
Funding: This work was performed with support of the US Department of Energy under Contract No. DE-SC0009914 The advent of optically triggered injection in multi component plasma wakefield accelerators has been shown to enable a substantial increase in witness electron beam quality. Here we present a novel way of using the overlap of laser and beam radial fields to locally liberate electrons from the tunneling ionization of the non-ionized gas species. These liberated ultracold electrons gain sufficient energy to be trapped in the accelerating phase at the back of the plasma blowout. This method of controlled injection has advantages in precision timing since injection is locked to peak beam current and has the potential of generating beams with very low emittance and energy spread. This method has been investigated using particle-in-cell (PIC) simulations. This scenario corresponds to a planned experiment, E-312, at SLAC’s FACET-II facility. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB146 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 01 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB147 | Asymmetric Beam Driven Plasma Wakefields at the AWA | 1732 |
|
||
Funding: This work was performed with the support of the US Department of Energy, Division of High Energy Physics under Contract No. DE-SC0017648 and DE-SC0009914 In future plasma wakefield acceleration-based scenarios for linear colliders, beams with highly asymmetric emittance are expected. In this case, the blowout region is no longer axisymmetric, but elliptical in cross-section, which implies that the focusing is not equal in the two transverse planes. In this paper, we analyze simulations for studying the asymmetries in flat-beam driven plasma acceleration using the round-to-flat-beam transformer at the Argonne Wakefield Accelerator. Beams with high charge and emittance ratios, in excess of 100:1, are routinely available at the AWA. We use particle-in-cell codes to compare various scenarios including a weak blowout, where the plasma focusing effect exhibits higher order mode asymmetry. Further, practical considerations for tunable plasma density using capillary discharge and laser ionization are compared for implementation into experimental designs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB147 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 13 July 2021 issue date ※ 02 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB148 | Optical-Period Bunch Trains to Resonantly Excite High Gradient Wakefields in the Quasi-Nonlinear Regime and the E-317 Experiment at FACET-II | 1736 |
|
||
Funding: This work was performed with the support of the US Department of Energy under Contract No. DE-SC0009914 and National Science Foundation under Grant No. PHY-1549132 Periodic electron bunch trains spaced at the laser wavelength created via inverse free electron laser (IFEL) bunching can be used to resonantly excite plasmas in the quasi-nonlinear (QNL) regime. The excitation can produce plasma blowout conditions using very low emittance beams despite having a small charge per bunch. The resulting plasma density perturbation is extremely nonlinear locally, but preserves the resonant response of the plasma electrons at the plasma frequency. This excitation can produce plasma blowout conditions using very low emittance beams despite having a small charge per bunch. To match the resonance condition, the plasma wavelength has to be equal to the laser period of a few microns. This corresponds to a high density plasma resulting in extremely large wakefield amplitudes. Matching the beam into such a dense plasma requires an extremely short focusing beta function. We present the beam-plasma interaction using quasi-static particle-in-cell (PIC) simulations and discuss the micro-bunching and focusing mechanism required for this scheme which would be a precursor to the planned experiment, E-317, at SLAC’s FACET-II facility. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB148 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 08 July 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB056 | Advanced Photoinjector Development at the UCLA SAMURAI Laboratory | 2728 |
|
||
Funding: This work was supported by the US Department of Energy under the contract No. DE-SC0017648, DE-SC0009914, and DE-SC0020409, and by National Science Foundation Grant No. PHY-1549132 UCLA has recently constructed SAMURAI, a new radiation bunker and laser infrastructure for advanced accelerator research. In its first phase, we will build a 30 MeV photoinjector with an S-band hybrid gun. The beam dynamics simulation for this beamline showed the generation of the beam with the emittance 2.4 um and the peak current 270 A. FIR-FEL experiments are planned in this beamline. The saturation peak power was expected at 170 MW. |
||
Poster WEPAB056 [0.939 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB056 | |
About • | paper received ※ 28 May 2021 paper accepted ※ 01 July 2021 issue date ※ 11 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB071 | Physics Goals of DWA Experiments at FACET-II | 3922 |
|
||
Funding: This work supported by DOE HEP Grant DE-SC0009914, The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071 | |
About • | paper received ※ 25 May 2021 paper accepted ※ 28 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |