Author: Liu, J.Y.
Paper Title Page
TUPAB357 Development of the X-Band Megawatt-Class Coaxial Magnetrons 2346
 
  • J.Y. Liu, H.B. Chen, Y.S. Han, J. Shi, C.-X. Tang, C.J. Wang, J. Wang, H. Zha
    TUB, Beijing, People’s Republic of China
 
  X-band coaxial magnetrons are preferred for industrial and medical accelerators owing to the compact size, low cost and high efficiency. A conditioning and high power test stand for X-band magnetrons has been built in Tsinghua University. Two X-band magnetrons named "MGT-1#" and "MGT-2#" were tested at this stand. The maximum anode currents of both magnetrons reached 100 A after the conditioning process. Maximum peak output power of 1.71 MW and 1.89 MW was achieved for "MGT-1#" and "MGT-2#", respectively. The efficiencies of the two magnetrons are both about 50%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB357  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB370 Study of an L-Band CW Linac 3575
 
  • J. Gao, H.B. Chen, J.Y. Liu, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  We have studied an L-band linac based on a cheap industrial magnetron, which works at CW mode with 75kW averaged output-power. The designed energy-gain of electrons is 500keV. Low accelerating gradient was the dominant problem encountered during the structure design. We adopted a standing-wave structure with magnetically coupling and nose cones to increase the effective shunt impedance. A 7-cell design has been completed, of which the transverse dynamics and thermodynamics were simulated. Results showed that this accelerating structure could work stably at 59 C and 100 mA output beam current was achieved. This L-band design provided a cheap and efficient way to generate low-energy electrons for industrial irradiation processing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB370  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)