Author: Li, B.
Paper Title Page
MOPAB053 Progress of Lattice Design and Physics Studies on the High Energy Photon Source 229
 
  • Y. Jiao, Y. Bai, X. Cui, C.C. Du, Z. Duan, Y.Y. Guo, P. He, X.Y. Huang, D. Ji, H.F. Ji, S.C. Jiang, B. Li, C. Li, J.Y. Li, N. Li, X.Y. Li, P.F. Liang, C. Meng, W.M. Pan, Y.M. Peng, Q. Qin, H. Qu, S.K. Tian, J. Wan, B. Wang, J.Q. Wang, N. Wang, Y. Wei, G. Xu, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: Work supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure and NSFC (11922512)
The High Energy Photon Source (HEPS) is a 34-pm, 1360-m storage ring light source being built in the suburb of Beijing, China. The HEPS construction started in mid-2019. While the physics design has been basically determined, modifications on the HEPS accelerator physics design have been made since 2019, in order to deal with challenges emerging from the technical and engineering designs. In this paper, we will introduce the new storage ring lattice and injector design, and also present updated results of related physics issues, including impedance and collective effects, lattice calibration, insertion device effects, injection design studies, etc.
 
poster icon Poster MOPAB053 [0.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053  
About • paper received ※ 10 May 2021       paper accepted ※ 24 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB075 Proposal of the Southern Advanced Photon Source and Current Physics Design Study 300
 
  • S. Wang, J. Chen, L. Huang, Y. Jiao, B. Li, Z.P. Li, W. Liu, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
  • Y. Han, X.H. Lu, Y. Zhao
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • X. Liu
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
 
  It has been considered to build a mid-energy fourth-generation storage ring light source neighbouring the China Spallation Neutron Source, in Guangdong Province, the south of China. The light source is named the Southern Advanced Photon Source (SAPS). Preliminary physics design studies on the SAPS have been implemented for a few years. In this paper, we will describe considerations of technical roadmap and key parameter choice for this light source, and introduce the up-to-date lattice designs and related physics studies on the SAPS.  
poster icon Poster MOPAB075 [1.689 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB075  
About • paper received ※ 12 May 2021       paper accepted ※ 20 May 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB045 The Low Energy Injector Design for the Southern Advanced Photon Source 1450
 
  • Y. Han
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y. Jiao, B. Li, X. Liu, S. Wang
    IHEP, Beijing, People’s Republic of China
 
  The Southern Advanced Photon Source (SAPS) is a project under design, which aims at constructing a 4th generation storage ring with emittance below 100 pm.rad at the electron beam energy of around 3.5 GeV. At present, two injector options are under consideration. One is a full energy booster plus a low energy injector, and another is a full energy linac injector. In this paper, a preliminary design of the low energy injector is presented, which consists of an DC thermionic electron gun, a bunching section and an accelerating section. The beam energy at the end of the injector is about 150 MeV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB045  
About • paper received ※ 17 May 2021       paper accepted ※ 09 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB046 Preliminary design of the Full Energy Linac Injector for the Southern Advanced Photon Source 1454
 
  • X. Liu
    Institute of High Energy Physics, CAS, Guangdong, People’s Republic of China
  • Y. Jiao, B. Li, S. Wang
    IHEP, Beijing, People’s Republic of China
 
  A 4th generation mid-energy range diffraction limited storage ring, named as the Southern Advanced Photon Source (SAPS), is under consideration to be built at the same campus as China Spallation Neutron Source (CSNS), providing a charming one-stop solution for fundamental sciences and industrial applications. While the design of the ring is still under study, a full energy Linac has been proposed as one candidate option for its injector, with the capability of being used as an X-ray Free Electron Laser (XFEL) in the near future. In this paper, an overview of the preliminary design of the Linac is given and simulation results are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB046  
About • paper received ※ 18 May 2021       paper accepted ※ 10 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB047 Bunch Compressor Design in the Full Energy Linac Injector for the Southern Advanced Photon Source 1458
 
  • B. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y. Jiao, X. Liu, S. Wang
    IHEP, Beijing, People’s Republic of China
 
  A mid-energy fourth-generation storage ring light source named the Southern Advanced Photon Source (SAPS), has been considered to be built neighboring the China Spallation Neutron Source (CSNS). A full energy linac has been proposed as an injector to the storage ring, with the capability to generate high brightness electron beams to feed a Free Electron Laser (FEL) at a later stage. To achieve the high peak current in FELs, space charge, RF structure wakefield, coherent synchrotron radiation (CSR), RF curvature, and the second-order momentum compaction factor should be carefully considered and optimized during the bunch compression processes. In this paper, physic design and simulation results of the bunch compressors are described.  
poster icon Poster TUPAB047 [1.918 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB047  
About • paper received ※ 15 May 2021       paper accepted ※ 09 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)