Author: Lautenschlager, B.
Paper Title Page
TUPAB302 Arrival Time Stabilization at Flash Using the Bunch Arrival Corrector Cavity (BACCA) 2194
 
  • B. Lautenschlager, Ł. Butkowski, M.K. Czwalinna, B. Dursun, M. Hierholzer, S. Pfeiffer, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
 
  For pump-probe and seeding experiments at free electron lasers, a femtosecond precise bunch arrival time stability is mandatory. To stabilize the arrival times a fast longitudinal intra bunch-train feedback (L-IBFB) using bunch arrival time monitors is applied. The electron bunch energy prior to a bunch compression chicane is modulated by superconducting radio frequency (SRF) cavities to compensate fast arrival time fluctuations of the subsequent bunches. A broadband normal conducting RF cavity was installed in front of the first bunch compression chicane at FLASH. The L-IBFB uses the normal conducting cavity for small but fast energy corrections together with the SRF cavities for larger and slower corrections. Current measurements show arrival time stabilities of the electron bunches towards 5 fs (rms) at the end of the linac, if the normal conducting cavity acts together with the SRF cavities in the L-IBFB system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB302  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXB02 Beam Arrival Stability at the European XFEL 3714
 
  • M.K. Czwalinna, J. Kral, B. Lautenschlager, J. Müller, H. Schlarb, S. Schulz, B. Steffen
    DESY, Hamburg, Germany
  • R. Boll, H. Kirkwood, J. Koliyadu, R. Letrun, J. Liu, F. Pallas, D.E. Rivas, T. Sato
    EuXFEL, Schenefeld, Germany
 
  Free electron laser facilities, such as the European XFEL, make increasingly high demands on the longterm temporal stability and uniformity of the electron bunches, as pump-probe experiments meanwhile aim for timing stabilities of few femtoseconds residual jitter only. For a beam-based feedback control of the linear accelerator, electro-optical bunch arrival-time monitors are deployed, achieving a time resolution better than 3 fs. In a first attempt, we recently demonstrated a beam-based feedback system, reducing the arrival time jitter of the electron bunches to the 10 fs level with stable operation over hours. For pump-probe experiments it is crucial to equally verify this new level of precision in the FEL pulse arrival time with independent methods. In this work, we are discussing first results from examining the facility-wide temporal stability at the European XFEL, with attention to the contributions of various sub-systems and on the different time scales.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXB02  
About • paper received ※ 19 May 2021       paper accepted ※ 20 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)