Author: Lai, L.W.
Paper Title Page
MOPAB278 Prototype of the Bunch Arrival Time Monitor for SHINE 881
 
  • X.Q. Liu, L.W. Lai
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Y.B. Leng, R.X. Yuan, N. Zhang, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
 
  Funding: Youth Innovation Promotion Association, CAS (Grant No. 2019290)
Bunch arrival time monitor (BAM) is an important tool to investigate the temporal characteristic of electron bunch in free electron lasers (FEL). Since the timing jitter of electron bunch will affect the FEL’s stability and the resolution of time-resolved experiment at FELs, it is nec-essary to precisely measure the electron bunch’s arrival time information to stabilize the electron bunch’s timing jitter using beam-based feedback. The BAM based on electro-optic modulator (EOM) is currently being devel-oping for Shanghai high-repetition-rate XFEL and Ex-treme light facility (SHINE). And the first BAM prototype has been installed on SXFEL for beam test. The beam test result shows that the estimated resolution of the pro-totype is about 27.5 fs rms.
 
poster icon Poster MOPAB278 [1.166 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB278  
About • paper received ※ 20 May 2021       paper accepted ※ 23 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC06 Development of the Prototype of the Cavity BPM System for SHINE 4552
 
  • J. Chen, Y.B. Leng, R.X. Yuan
    SSRF, Shanghai, People’s Republic of China
  • S.S. Cao
    SINAP, Shanghai, People’s Republic of China
  • L.W. Lai
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  The Shanghai high repetition rate XFEL and extreme light facility (SHINE) under construction is designed as one of the most advanced FEL facilities in the world, which will produce coherent x-rays with wavelengths from 0.05 to 3 nm and maximum repetition rate of 1MHz. In order to achieve precise, stable alignment of the electron and photo beams in the undulator, the prototype of the cavity beam position monitors (CBPM) including C-band and X-band have been designed and fabricated for the SHINE. And the requirement of the transverse position resolution is better than 200 nm for a single bunch of 100 pC at the dynamic range of ±100 µm. In this paper, we present the design of the cavity with high loaded Q and the RF front-end with low noise-figure, adjustable gain, single-stage down-conversion and phase-locked with reference clock, and also described the structure and specifications of the home-made data acquisition (DAQ) system. The construction of the experiment platform and preliminary measurement result with beam at Shanghai Soft X-ray FEL facility (SXFEL) will be addressed as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC06  
About • paper received ※ 20 May 2021       paper accepted ※ 06 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB322 Status of Digital BPM Signal Processor for SHINE 3430
 
  • L.W. Lai, F.Z. Chen, Y.B. Leng, T. Wu, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
  • J. Wan
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Youth Innovation Promotion Association, CAS (Grant No. 2019290); The National Key Research and Development Program of China (Grant No. 2016YFA0401903).
Digital signal processors that can handle 1MHz bunch rate BPM signal processing are under development for SHINE. Two different processors have been developed at the same time, including an intermediate frequency signal processor with a sampling rate higher than 500MHz, which can be used in general BPM applications; and a direct RF sampling processor, which can directly sample the C band cavity BPM signal without analog down-conversion modules and greatly simplifies the cavity BPM system. This paper will introduce the design, development status, and performance evaluations of the processors.
 
poster icon Poster WEPAB322 [1.919 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)