Author: Kuriki, M.
Paper Title Page
TUPAB015 Beam Loading Compensation of APS Cavity with Off-Crest Acceleration in ILC e-Driven Positron Source 1368
 
  • M. Kuriki, S. Konno, H. Nagoshi
    HU/AdSM, Higashi-Hiroshima, Japan
  • T. Omori, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  In E-Driven positron source of ILC, the generated positron is captured by RF accelerator by APS cavity. The positron is initially placed at the deceleration phase and gradually slipped down to acceleration phase. Because the beam-loading is expected to be more than 1A with a multi-bunch format, the compensation is essential to obtain uniform intensity over the pulse. A conventional method for the compensation is controlling the timing, but it doesn’t work in off-crest case. In this manuscript, we discuss the compensation with the phase and amplitude modulation on the input RF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB015  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB022 Possibilities for Upgrading to Polarized SuperKEKB 3799
 
  • Z.J. Liptak, M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • J.M. Roney
    Victoria University, Victoria, B.C., Canada
 
  The SuperKEKB accelerator is currently in operation in Tsukuba, Japan, with a planned long shutdown in 2026. Among the possible upgrades being considered during this period is the change to a polarized electron beam in the High Energy Ring. Such a change would require modifications in the source generation and transport, geometrical and lattice variations to provide spin rotation, and polarimetry. A Polarized SuperKEKB Working Group has been formed from members of the Belle II experiment and the SuperKEKB accelerator team to investigate the possibilities and challenges of these modifications. This talk lays out the goals of the proposed upgrade, considers the necessary changes to the existing accelerator and their feasibility and lays out the physics motivation behind such an effort.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB022  
About • paper received ※ 19 May 2021       paper accepted ※ 23 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)