Author: Kubo, K.
Paper Title Page
MOPAB231 Tunability Study of the Ultra-Low β* Optics at ATF2 with New Octupole Setup and Tuning Knobs 752
 
  • A. Pastushenko, R. Tomás García
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • K. Kubo, S. Kuroda, T. Naito, T. Okugi, N. Terunuma, R.J. Yang
    KEK, Ibaraki, Japan
 
  The main goal of the Accelerator Test Facility 2 (ATF2) is to demonstrate the feasibility of future linear colliders’ final focus systems. The Ultra-low β* optics of ATF2 is designed to have the same chromaticity level as CLIC. To ease the tuning procedure, a pair of octupoles was installed in ATF2 in 2017. This paper reports the optimizations performed to the octupoles’ setup for Ultra-low β* optics including the new alignment technique, based on the waist shift and the new tunning knobs constructed for this optics. The full tuning procedure including the static errors is simulated for this setup.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB231  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB020 A Sub-Micron Resolution, Bunch-by-Bunch Beam Trajectory Feedback System and Its Application to Reducing Wakefield Effects in Single-Pass Beamlines 1382
 
  • D.R. Bett, P. Burrows, C. Perry, R.L. Ramjiawan
    JAI, Oxford, United Kingdom
  • D.R. Bett
    CERN, Geneva, Switzerland
  • K. Kubo, T. Okugi, N. Terunuma
    KEK, Ibaraki, Japan
 
  A high-precision intra-bunch-train beam orbit feedback correction system has been developed and tested at the KEK Accelerator Test Facility, ATF2. The system uses the vertical position of the bunch measured at two beam position monitors to calculate a pair of kicks which are applied to the next bunch using two upstream kickers, thereby correcting both the vertical position and trajectory angle. Using trains of two electron bunches separated in time by 187.6ns, the system was optimised so as to stabilize the beam offset at the feedback BPMs to better than 350nm, yielding a local trajectory angle correction to within 250nrad. The quality of the correction was verified using three downstream witness BPMs and the results were found to be in agreement with the predictions of a linear lattice model used to propagate the beam trajectory from the feedback region. This same model predicts a corrected be am jitter of c.1nm at the focal point of the accelerator. Measurements with a beam size monitor at this location demonstrate that reducing the trajectory jitter of the beam by a factor of 4 also reduces the increase in the measured beam size as a function of beam charge by a factor of ~1.6.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB020  
About • paper received ※ 13 May 2021       paper accepted ※ 01 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)