Paper | Title | Page |
---|---|---|
MOPAB284 | Status of the Dedicated Electron Diagnostic Beamline at AXSIS | 902 |
|
||
Funding: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 609920. AXSIS (Attosecond X-ray Science: Imaging and Spectroscopy) is a compact, accelerator-driven X-ray source currently under construction at DESY Hamburg. It comprises a THz-powered electron gun and THz-driven linac for all-optical electron extraction and acceleration to several MeV with the goal of providing X-rays generated by inverse Compton scattering for photon science experiments. For the commissioning and characterisation of the THz gun and linac the facility includes a dedicated accelerator testing area, for which an electron diagnostic beamline has been designed and is currently under construction. The challenges imposed by the AXSIS project on the development of the diagnostics beamline are the wide ranges of bunch charge (15 fC to 3 pC) and energy (5 MeV to 20 MeV) expected from the THz-driven accelerator as well as the limited available space of only ca. 2.5 metres length. In this contribution we present an overview of the design and the current commissioning status of the electron diagnostic beamline as well as plans for future steps. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB284 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 18 June 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB158 | Compact Terahertz-Powered Electron Photo-Gun | 2983 |
|
||
Funding: This work is supported by the Cluster of Excellence "CUI: Advanced Imaging of Matter" of the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - project ID 390715994. Novel accelerator concepts such as all-optical THz based compact accelerators promise to enable new science due to unique features such as reduced timing-jitter and improved space-charge broadening of the generated electron bunches. However, multi-keV electron photo-guns based on short single-cycle THz pulses for acceleration have not been demonstrated experimentally so far. Here, we present a modular THz-driven electron gun with both tunable interaction length and output orifice allowing optimization of the sub-mm interaction volume. First extraction of multi-keV electrons is demonstrated and the parameter space as well as resulting performance of the THz-driven gun by varying the timing of the two single-cycle THz pulses and the UV photo-excitation pulse are explored. Such compact gun prototypes are not only promising as injectors for compact THz-based LINACs but also as source for ultrafast electron diffraction experiments. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB158 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 09 June 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |