Author: Kazakevich, G.M.
Paper Title Page
THPAB336 Novel Magnetron Operation and Control Methods for Superconducting RF Accelerators 4442
 
  • G.M. Kazakevich, R.P. Johnson
    Muons, Inc, Illinois, USA
  • T.N. Khabiboulline, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  High power magnetrons designed and optimized for industrial heating, being injection-locked, have been suggested to power superconducting RF cavities for accelerators due to lower cost and higher efficiency. However, standard operation methods do not provide high efficiency with wideband control suppressing microphonics. We have developed and experimentally verified novel methods of operating and controlling the magnetron that provide stable RF generation with higher efficiency and lower noise than other RF sources. By our method the magnetrons operate with the anode voltage notably lower than the self-excitation threshold improving its performance. This is also a promising way to increase tube reliability and longevity. A magnetron operating with the anode voltage lower than the self-excitation threshold, in so-called stimulated coherent generation mode has special advantage for pulse operation with a gated injection-locking signal. This eliminates the need for expensive pulsed HV modulators and additionally increases the magnetron RF source efficiency due to absence of losses in HV modulators.  
poster icon Poster THPAB336 [0.960 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB336  
About • paper received ※ 15 May 2021       paper accepted ※ 08 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)