Author: Jiang, S.M.
Paper Title Page
WEPAB077 High Power Terahertz Cherenkov Free Electron Laser from a Waveguide with a Thin Dielectric Layer by a Near-Relativistic Electron Beam 2769
 
  • W.W. Li, T.L. He, Z.G. He, R. Huang, Q.K. Jia, S.M. Jiang, L. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: National Natural Science Foundation of China (11705198, 11775216, 11805200) Fundamental Research Funds for the Central Universities (No. WK2310000082 and No. WK2310000090)
Corrugated and dielectric structures have been widely used for producing accelerator based terahertz radiation source. Recently, the novel schemes of the sub-terahertz free electron laser (FEL) from a metallic waveguide with corrugated walls and a normal dielectric loaded waveguide driven by a near-relativistic (beam energy of a few MeV) picosecond electron beam were studied respectively. Such a beam is used for driving resonant modes in the waveguide, and if the pipe is long enough, the interaction of these modes with the co-propagating electron beam will result in micro-bunching and the coherent enhancement of the wakefield radiation. It offers a promising candidate for compact accelerator-based high power terahertz source which can be realized with relatively low energy and low peak-current electron beams. However the choices of the waveguide above is less effective in order to obtain high power with frequency around 1THz. In this paper, we propose to use the waveguide with a thin dielectric layer instead, and high power radiation (>~10 MW) around 1 THz is expected to obtain in the proposed structure according to the simulation results.
 
poster icon Poster WEPAB077 [1.332 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB077  
About • paper received ※ 12 May 2021       paper accepted ※ 23 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)