Author: Jaski, M.S.
Paper Title Page
MOPAB057 Evaluation of Pulsed Septum Leakage Fields and Compensation for the Advanced Photon Source Upgrade 245
 
  • M. Borland, M.S. Jaski, J. Wang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source upgrade is considering two options for injection: vertical-plane injection with a DC Lambertson septum and horizontal-plane injection with a pulsed septum. In the latter case, pulsed leakage fields are a concern as they will cause transient beam motion and emittance dilution. In this paper, we describe results of modeling the effect of such leakage fields on the beam. We also evaluate methods of compensating for the leakage fields, including the limited time response of correction elements. Several septum drive-pulse shapes are considered and compared.
 
poster icon Poster MOPAB057 [2.066 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB057  
About • paper received ※ 17 May 2021       paper accepted ※ 26 May 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB058 Swap-Out Safety Tracking for the Advanced Photon Source Upgrade 249
 
  • M. Borland, J.S. Downey, M.S. Jaski
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source upgrade will operate in swap-out mode, which is similar to top-up but involves complete replacement of individual depleted bunches in a single shot. As with top-up, safety is a concern given that this process will take place with beamline shutters open. We describe the methods used to model swap-out safety, including creation and validation of a full ring lattice based on 3D field maps. We also describe a new method of implementing complex, intersecting channels for electron beams and photon beams, as well as a method of easily identifying potentially dangerous stray particles. Numerous potential errors (e.g., magnet shorts) were modeled, giving a reliable indication of performance of proposed stored beam and magnet interlocks.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB058  
About • paper received ※ 14 May 2021       paper accepted ※ 28 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB051 Vertical Septum Magnet Design for the APS Upgrade 3862
 
  • M. Abliz, M. Borland, H. Cease, G. Decker, A.K. Jain, M.S. Jaski, M. Kasa, J.S. Kerby, U. Wienands, A. Xiao
    ANL, Lemont, Illinois, USA
  • J.W. Amann
    SLAC, Menlo Park, California, USA
  • D.J. Harding
    Fermilab, Batavia, Illinois, USA
 
  The vertical injection scheme proposed for the APS Upgrade (APS-U) Project requires a challenging septum magnet that must meet stringent beam physics, magnetic field leakage, and vacuum requirements. The current iteration of this magnet design includes an enlarged stored-beam chamber aperture of 9 mm x 12 mm and a reduction of the septum thickness to 1.5 mm. The enlarged aperture accommodates a non-evaporable getter (NEG)-coated stored beam chamber to better achieve the required vacuum. A prototype septum magnet has been built and measurements confirm the cancellation of a peak leakage field even though the value is six times larger than the design. The leakage field measured at the upstream (US) end cancels the downstream (DS) end as was expected by design. The measured and simulated leakage field and the stored beam trajectories are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB051  
About • paper received ※ 14 May 2021       paper accepted ※ 01 September 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)