Author: Iwata, Y.
Paper Title Page
WEXB06 Development of an APF IH-DTL in the J-PARC Muon g-2/EDM Experiment 2544
 
  • Y. Nakazawa, H. Iinuma
    Ibaraki University, Hitachi, Ibaraki, Japan
  • E. Cicek, N. Kawamura, T. Mibe, M. Yoshida
    KEK, Ibaraki, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • Y. Iwata
    NIRS, Chiba-shi, Japan
  • R. Kitamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Otani, N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • Y. Takeuchi
    Kyushu University, Fukuoka, Japan
  • T. Yamazaki
    KEK, Tokai Branch, Tokai, Naka, Ibaraki, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  An inter-digital H-mode drift-tube linac (IH-DTL) is under development in a muon linac at the J-PARC muon g-2/EDM experiment. It accelerates muons from 0.34 MeV to 4.3 MeV at an operating frequency of 324 MHz. The cavity can be miniaturized by introducing the alternative phase focusing (APF) method that enables transverse focusing only with an E-field. The APF IH-DTL cavity was modeled by a three-dimensional field analysis, and the beam dynamics were evaluated numerically. The beam emittance was calculated as 0.316pi and 0.189pi mm mrad in the horizontal and vertical directions, respectively. It satisfies the experimental requirement. Actually, the field error due to the fabrication errors and thermal expansion during operation causes an emittance growth. It was evaluated that the optimized tuners can suppress the emittance growth to less than 10%. In this paper, the detailed design of the APF IH-DTL including the tuner will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB06  
About • paper received ※ 19 May 2021       paper accepted ※ 29 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)