Paper | Title | Page |
---|---|---|
MOPAB195 | Development of a Disk-and-Washer Cavity for the J-PARC Muon g-2/EDM Experiment | 658 |
|
||
At J-PARC, an experiment using muons accelerated by a linac is planned to measure the anomalous magnetic moment of muons and to search for the electric dipole moment. A 1296 MHz disk and washer (DAW) coupled cavity linac (CCL) is being developed for use in the middle beta section of the muon linac. The DAW CCL consists of 14 tanks with 11 cells each. All tanks are connected by bridge couplers and electromagnetic quadrupole doublets for focusing are installed in each bridge coupler. The basic design of the DAW cavity has already been completed, and now detailed cavity design studies and manufacturing process studies are underway. In this poster, we will report about these studies and the preparation status of manufacturing the DAW cavity. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB195 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 01 June 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB342 | Preliminary Cryogenic Cold Test Results of the First 9-Cell LSF Shape Cavity | 2296 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Supplemental support by US-Japan Collaboration on HEP. Following successful prototyping and testing of single- & 5-cell LSF shape cavities *, **, the first 9-cell LSF shape cavity LSF9-1 was successfully constructed using an innovative process at JLab with the in-house facilities. The cavity was then shipped to KEK for post-fabrication mechanical adjustment and ILC TDR style treatment and surface processing. Cold testing was carried out at the JLab VTA facility, instrumented with a suite of Kyoto instruments. Favorable values for the bath pressure detuning sensitivity and Lorentz force detuning coefficient were experimentally measured, validating the design improvement in cell stiffeners. Pass-band measurements indicate 4 out of 9 cells reaching gradient capability of > 45 MV/m, including 2 cells reaching 51 MV/m. Cornell OST detectors identified the cell and location responsible for the current hard quench limit. Multipacting-like barriers observed in end cells are investigated both analytically and numerically. The cavity was shipped to FNAL and received a light EP at the joint ANL/FNAL facility for further cold testing at Jlab. Two new 9-cell LSF cavities are being constructed including one made of large-grain niobium material. * R. L. Geng et al.,WEPWI013, IPAC15. ** R. L. Geng et al., MOP064, SRF’19. |
||
![]() |
Poster TUPAB342 [1.600 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB342 | |
About • | paper received ※ 09 May 2021 paper accepted ※ 14 June 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |