Author: Iwashita, Y.
Paper Title Page
MOPAB195 Development of a Disk-and-Washer Cavity for the J-PARC Muon g-2/EDM Experiment 658
 
  • Y. Takeuchi, J. Tojo
    Kyushu University, Fukuoka, Japan
  • E. Cicek, K. Futatsukawa, N. Kawamura, T. Mibe, M. Otani, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  At J-PARC, an experiment using muons accelerated by a linac is planned to measure the anomalous magnetic moment of muons and to search for the electric dipole moment. A 1296 MHz disk and washer (DAW) coupled cavity linac (CCL) is being developed for use in the middle beta section of the muon linac. The DAW CCL consists of 14 tanks with 11 cells each. All tanks are connected by bridge couplers and electromagnetic quadrupole doublets for focusing are installed in each bridge coupler. The basic design of the DAW cavity has already been completed, and now detailed cavity design studies and manufacturing process studies are underway. In this poster, we will report about these studies and the preparation status of manufacturing the DAW cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB195  
About • paper received ※ 20 May 2021       paper accepted ※ 01 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB342 Preliminary Cryogenic Cold Test Results of the First 9-Cell LSF Shape Cavity 2296
 
  • R.L. Geng, W.A. Clemens, R.S. Williams
    JLab, Newport News, Virginia, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Hayano
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • Z. Li
    SLAC, Menlo Park, California, USA
  • V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Supplemental support by US-Japan Collaboration on HEP.
Following successful prototyping and testing of single- & 5-cell LSF shape cavities *, **, the first 9-cell LSF shape cavity LSF9-1 was successfully constructed using an innovative process at JLab with the in-house facilities. The cavity was then shipped to KEK for post-fabrication mechanical adjustment and ILC TDR style treatment and surface processing. Cold testing was carried out at the JLab VTA facility, instrumented with a suite of Kyoto instruments. Favorable values for the bath pressure detuning sensitivity and Lorentz force detuning coefficient were experimentally measured, validating the design improvement in cell stiffeners. Pass-band measurements indicate 4 out of 9 cells reaching gradient capability of > 45 MV/m, including 2 cells reaching 51 MV/m. Cornell OST detectors identified the cell and location responsible for the current hard quench limit. Multipacting-like barriers observed in end cells are investigated both analytically and numerically. The cavity was shipped to FNAL and received a light EP at the joint ANL/FNAL facility for further cold testing at Jlab. Two new 9-cell LSF cavities are being constructed including one made of large-grain niobium material.
* R. L. Geng et al.,WEPWI013, IPAC15.
** R. L. Geng et al., MOP064, SRF’19.
 
poster icon Poster TUPAB342 [1.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB342  
About • paper received ※ 09 May 2021       paper accepted ※ 14 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)