Author: Huang, X.Y.
Paper Title Page
MOPAB053 Progress of Lattice Design and Physics Studies on the High Energy Photon Source 229
 
  • Y. Jiao, Y. Bai, X. Cui, C.C. Du, Z. Duan, Y.Y. Guo, P. He, X.Y. Huang, D. Ji, H.F. Ji, S.C. Jiang, B. Li, C. Li, J.Y. Li, N. Li, X.Y. Li, P.F. Liang, C. Meng, W.M. Pan, Y.M. Peng, Q. Qin, H. Qu, S.K. Tian, J. Wan, B. Wang, J.Q. Wang, N. Wang, Y. Wei, G. Xu, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: Work supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure and NSFC (11922512)
The High Energy Photon Source (HEPS) is a 34-pm, 1360-m storage ring light source being built in the suburb of Beijing, China. The HEPS construction started in mid-2019. While the physics design has been basically determined, modifications on the HEPS accelerator physics design have been made since 2019, in order to deal with challenges emerging from the technical and engineering designs. In this paper, we will introduce the new storage ring lattice and injector design, and also present updated results of related physics issues, including impedance and collective effects, lattice calibration, insertion device effects, injection design studies, etc.
 
poster icon Poster MOPAB053 [0.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053  
About • paper received ※ 10 May 2021       paper accepted ※ 24 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB304 Preliminary Investigation of the Noises and Updates on Physics Studies of FOFB in HEPS 2197
 
  • X.Y. Huang, Y. Jiao, Y. Wei
    IHEP, Beijing, People’s Republic of China
 
  High Energy Photon Source (HEPS) is a Fourth-generation storage ring light source in China and is under construction. Noises, such as the ambient mechanical vibration and the power supply ripples of magnets, may induce large orbit motions of electron bunches and hence dramatically degrade the emitted photon beam quality. The effect of noises becomes significant and needs to be considered very carefully, especially when the emittances of the electron beam approach the diffraction limit of x-ray. For the HEPS, the noises are modelled and the total beam orbit motion is evaluated considering the spectral characteristics of all the transformation processes from the errors to the orbit. In this paper, we present the preliminary calculation of the effects of noises in HEPS, and the control of the orbit motion with the FOFB system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB304  
About • paper received ※ 17 May 2021       paper accepted ※ 02 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB258 Status of Time-Domain Simulation for the Fast Orbit Feedback System at the HEPS 4311
 
  • Y. Wei, Z. Duan, X.Y. Huang, Y. Jiao
    IHEP, Beijing, People’s Republic of China
 
  High Energy Photon Source (HEPS) is a complex designed at ultra-low emittance. A fast orbit feedback system is proposed to meet the requirement of beam orbit stability at the sub-micron level. In this paper, we present our work on setting up an orbit feedback process combined with noise model, system modeling, and particle tracking in the time domain. RF phase parameter is adjusted together with fast correctors to mitigate the orbit fluctuation due to energy vibration. The preliminary results are shown here. By the following optimization, we hope to provide an effective tool to specify and configure the FOFB system with the simulation.  
poster icon Poster THPAB258 [1.334 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB258  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)