Paper | Title | Page |
---|---|---|
MOXB02 | First Results of the IOTA Ring Research at Fermilab | 19 |
|
||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The IOTA ring at Fermilab is a unique machine exclusively dedicated to accelerator beam physics R&D. The research conducted at IOTA includes topics such as nonlinear integrable optics, suppression of coherent beam instabilities, optical stochastic cooling and quantum science experiments. In this talk we report on the first results of experiments with implementations of nonlinear integrable beam optics. The first of its kind practical realization of a two-dimensional integrable system in a strongly-focusing storage ring was demonstrated allowing among other things for stable beam circulation near or at the integer resonance. Also presented will be the highlights of the world’s first demonstration of optical stochastic beam cooling and other selected results of IOTA’s broad experimental program. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOXB02 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 02 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB026 | Optics Measurements and Correction Plans for the HL-LHC | 2656 |
|
||
The High Luminosity LHC (HL-LHC) will require stringent optics correction to operate safely and deliver the design luminosity to the experiments. In order to achieve this, several new methods for optics correction have been developed. In this article, we outline some of these methods and we describe the envisioned strategy of how to use them in order to reach the challenging requirements of the HL-LHC physics program. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB026 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 27 July 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB027 | Optics Correction Strategy for Run 3 of the LHC | 2660 |
|
||
The Run 3 of the LHC will continue to provide new challenges for optics corrections. In order to succeed and go beyond what was achieved previously, several new methods to measure and correct the optics have been developed. In this article we describe these methods and outline the plans for the optics commissioning in 2022. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB027 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 12 July 2021 issue date ※ 11 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB168 | Optics Measurement by Excitation of Betatron Oscillations in the CERN PSB | 4078 |
|
||
Optics measurement from analysis of turn-by-turn BPM data of betatron oscillations excited with a kicker magnet has been employed very successfully in many machines but faces particular challenges in the CERN PSB where BPM to BPM phase advances are sub-optimal for optics reconstruction. Experience using turn-by-turn oscillation data for linear optics measurements during PSB commissioning in2021 is presented, with implications for the prospect of such techniques in the PSB more generally. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB168 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 14 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |