Author: Hoeltermann, H.    [Höltermann, H.]
Paper Title Page
MOPAB192 LILac Energy Upgrade to 13 MeV 651
 
  • B. Koubek, S. Altürk, M. Busch, H. Höltermann, J.D. Kaiser, H. Podlech, U. Ratzinger, M. Schuett, M. Schwarz, W. Schweizer, D. Strehl, R. Tiede, C. Trageser
    BEVATECH, Frankfurt, Germany
  • A. Brunzel, P. Nonn, H. Schlarb
    DESY, Hamburg, Germany
  • A.V. Butenko, D.E. Donets, B.V. Golovenskiy, A. Govorov, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  In the frame of the NICA (Nuclotron-based Ion Collider fAcility) ion collider upgrade a new light ion LINAC for protons and ions will be built in collaboration between JINR and BEVATECH GmbH. While ions with a mass-to-charge ratio up to 3 will be fed into the NUCLOTRON ring with an energy of 7 MeV/u, protons are supposed to be accelerated up to an energy of 13 MeV using a third IH structure. This energy upgrade comprises a third IH structure, a dual-use Debuncher cavity as well as an extension of the LLRF control system built on MicroTCA technology.  
poster icon Poster MOPAB192 [4.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB192  
About • paper received ※ 11 May 2021       paper accepted ※ 31 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB176 Acceleration of He+ Beams for Injection Into NICA Booster During its First Run 3016
 
  • K.A. Levterov, V.P. Akimov, D.S. Letkin, D.O. Leushin, V.V. Mialkovskiy
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • A.M. Bazanov, A.V. Butenko, D.E. Donets, D. Egorov, A.R. Galimov, B.V. Golovenskiy, A. Govorov, V.V. Kobets, A.D. Kovalenko, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, I.V. Shirikov, A.O. Sidorin, E. Syresin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • H. Höltermann, H. Podlech
    BEVATECH, Frankfurt, Germany
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Heavy Ion Linear Accelerator (HILAC) is designed to accelerate the heavy ions with ratio A/Z<=6.25 produced by ESIS ion source up to the 3.2 MeV for the injection into superconducting synchrotron (SC) Booster. HILAC was commissioned in 2018 using the carbon beams from Laser Ion Source (LIS). The project output energy was verified. Transmission could be estimated only for DTL structure because of the presence at the RFQ input the mixture of ions with different charge states extracted from laser-plasma. To estimate transmission through the whole linac the ion source producing the only species He+ was designed. The beams of He+ ions were used for the first run of SC Booster. The design of the helium ion source and results of the He+ beam acceleration and injection are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB176  
About • paper received ※ 19 May 2021       paper accepted ※ 11 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB167 Technical Design of an RFQ Injector for the IsoDAR Cyclotron 4075
 
  • H. Höltermann, D. Koser, B. Koubek, H. Podlech, U. Ratzinger, M. Schuett, M. Syha
    BEVATECH, Frankfurt, Germany
  • J.M. Conrad, J. Smolsky, L.H. Waites, D. Winklehner
    MIT, Cambridge, Massachusetts, USA
 
  For the IsoDAR (Isotope Decay-At-Rest) experiment, a high intensity (10 mA CW) primary proton beam is needed. To generate this beam, H2+ is accelerated in a cyclotron and stripped into protons after extraction. An RFQ, partially embedded in the cyclotron yoke, will be used to bunch and axially inject H2+ ions into the main accelerator. The strong RFQ bunching capabilities will be used to optimize the overall injection efficiency. To keep the setup compact the distance between the ion source and RFQ can be kept very short as well. In this paper, we describe the technical design of the RFQ. We focus on two critical aspects: 1. The use of a split-coaxial structure, necessitated by the low frequency of 32.8 MHz (matching the cyclotron RF) and the desired small tank diameter; 2. The high current, CW operation, requiring a good cooling concept for the RFQ tank and vanes.  
poster icon Poster THPAB167 [2.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB167  
About • paper received ※ 14 May 2021       paper accepted ※ 27 July 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)