Paper | Title | Page |
---|---|---|
WEPAB072 | PAX: A Plasma-Driven Attosecond X-Ray Source | 2755 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. This work was also partially supported by DOE grant DESC0009914 Plasma accelerators can generate ultra high brightness electron beams which open the door to light sources with smaller physical footprint and properties unachievable with conventional accelerator technology. In this work * we show that electron beams from Plasma WakeField Accelerators (PWFAs) can generate coherent tunable soft X-ray pulses with TW peak power and duration of tens of attoseconds in a meter-length undulator. These X-ray pulses are an order of magnitude more powerful, shorter and can be produced with better stability than state-of-the-art X-ray Free Electron Lasers (XFELs). The X-ray emission in this approach is driven by coherent radiation from a pre-bunched, near Mega Ampere (MA) current electron beam of attosecond duration rather than the SASE FEL process starting from noise. This approach significantly relaxes the restrictive requirements on emittance, energy spread, and pointing stability which has thus far hindered the realization of a high-gain FEL driven by a plasma accelerator. We discuss the approach and progress towards the experimental realization of this concept at the FACET-II accelerator facility. * C. Emma, X. Xu, A. Fisher, J. P. MacArthur, J. Cryan, M. J. Hogan, P. Musumeci, G. White, A. Marinelli, "Terawatt attosecond X-ray source driven by a plasma accelerator", arXiv:2011.07163 (2020) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB072 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 24 June 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |