Author: Harryman, D.M.
Paper Title Page
TUPAB283 Feasibility Study of ChDR Diagnostic Device in the LHC 2139
 
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
  • M. Bergamaschi, M. Krupa, K. Łasocha, T. Lefèvre, S. Mazzoni, N. Mounet, E. Senes
    CERN, Geneva, Switzerland
  • D.M. Harryman
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • A. Potylitsyn
    TPU, Tomsk, Russia
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
 
  In recent years Cherenkov Diffraction Radiation (ChDR) has been reported as a phenomenon suitable for various types of particle accelerator diagnostics. As it would typically work best for highly relativistic beam, past studies and experiments have been mostly focusing on the lepton machines. This contribution investigates the prospects on the utilization of ChDR as a diagnostic tool for the Large Hadron Collider (LHC). Based on theoretical considerations and simulation results we estimate the properties of the expected radiation, both in the incoherent and coherent domain, and we compare them with the requirements of the existing diagnostic systems. We also address the potential problem of the use of dielectric radiators in circular machines, where secondary electrons could potentially lead to the creation of electron clouds inside the beam pipe that may affect the radiator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB283  
About • paper received ※ 14 May 2021       paper accepted ※ 18 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)