Author: Hakulinen, T.
Paper Title Page
TUPAB314 SPS Personnel Protection System: From Design to Commissioning 2224
 
  • T. Ladzinski, T. Hakulinen, F. Havart, V. Martins De Sousa Dos Rios, M. Munoz Codoceo, P. Ninin, J.P. Ridewood, E. Sanchez-Corral Mena, D. Vaxelaire
    CERN, Meyrin, Switzerland
 
  During the second long shutdown (LS2) of the accelerator complex at CERN, the access system of the Super Proton Synchrotron (SPS) was completely renovated. This complex project was motivated by the technical obsolescence and lack of sufficient redundancy in the existing system, as well as by the need for homogenisation of technologies and practices across the different machines at CERN. The new Personnel Protection System includes 16 state-of-the-art access points making sure that only fully identified, trained and authorised personnel can enter the facility and an interlock system with a rationalized number of safety chains designed to meet the current safety standards. The control part is based on Siemens 1500 series of programmable logic controllers, complemented by a technologically diverse relay logic loop for the critical safety functions. This paper presents the new system and the design choices made to permit fast installation in a period where the access system itself was heavily used to allow vast upgrades of the SPS accelerator and its infrastructure. It also covers the verification and validation methodology and lessons learned during the commissioning phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB314  
About • paper received ※ 14 May 2021       paper accepted ※ 10 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB322 Redesign and Upgrade of the LHC Access Control System 2249
 
  • T. Hakulinen, S. Di Luca, G. Godineau, R. Nunes, G. Smith
    CERN, Meyrin, Switzerland
 
  The old LHC Access Control System (LACS) was based on a single access control solution, which integrated software and hardware into one monolithic application encompassing all the different subsystems (access control, video surveillance, interphones, biometry, equipment control, safety elements). Both the hardware and software were approaching end-of-life by the vendor before the CERN Long Shutdown 2 (LS2). The new design is based on a distributed approach, where the different subsystems are integrated in a flexible manner with well-defined interfaces, which will permit much easier single sub-system management, upgrades, and even full replacements if necessary. From the system point of view, the focus is on the advantages that this redesign brings to system operation, testing, and management. Procedurally the interest is in the overall management of a very complex in-place upgrade of a system, where the new implementation needed to coexist with the old during its constant simultaneous solicitation over the LS2.  
poster icon Poster TUPAB322 [6.906 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB322  
About • paper received ※ 15 May 2021       paper accepted ※ 28 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)