Paper | Title | Page |
---|---|---|
MOPAB340 | Experimental Tests with the First Segment of ESS-Bilbao RFQ Linac | 1054 |
|
||
The ESS-Bilbao RFQ is an assembly of four segments, each one about 800 mm in length. The first segment has been manufactured before the others, so it could be thoroughly tested in order to validate the chosen technological approach for the RFQ, as it uses polymeric vacuum gaskets and bolts instead of brazing. In this paper we report on the tests run with the segment and their results. Vacuum tests, metrology measurements, low power RF tests as well as extensive tuning tests measuring the cavity resonant quadrupolar frequency as a function of cooling water temperature have been done. Experimental results are compared to the expected values obtained from numerical simulations. We describe the experimental set-ups for the measurements and the simulations. Results are analyzed with the aim of validating the design, and also to provide predictions for tuning and operation of the whole RFQ. As a consequence of the positive results of the tests reported here, the remaining segments have already been tendered. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB340 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 25 May 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB356 | The ESS MEBT RF Buncher Cavities Conditioning Process | 1107 |
|
||
Funding: This work is part of FEDER-TRACKS project, co-funded by the European Regional Development Fund (ERDF) . As part of the 5 MW European Spallation Source (ESS), the Medium Energy Beam Transport (MEBT) was designed, assembled, and installed in the tunnel since May 2020 by ESS-Bilbao. This section of the accelerator is located between the Radio Frequency Quadrupole (RFQ) and the Drift Tube Linac (DTL). The main purpose of the MEBT is to match the incoming beam from the RFQ both transversely and longitudinally into the DTL. The longitudinal matching is achieved by three 352.209 MHz RF buncher cavities. In this paper, we focus on the RF conditioning process for each set of power coupler and buncher cavity. For this purpose, different tools were developed on EPICS and Python as well as electronics hardware such as Fast Interlock Module (FIM) and timing system. These tools served to automatize both the cavity frequency tuning and the power ramp-up process and will be described in detail in the following sections. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB356 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 09 June 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |